
A Comparative Overview of Robotic Frameworks:
ROS and RSB

Mustafa Özçelikörs
Fachhochschule Dortmund, Fach. Info.- und Elektrotechnik

M.Sc. Embedded Systems for Mechatronics
Dortmund, Germany

mozcelikors@gmail.com

Abstract—Today, developers are competing against each
other to provide the best robotic middleware to the robotics
community. In this paper, ROS, a middleware with a huge utility
and community support; and RSB, an event-driven middleware
that will change our expectations of the communication
architecture of robotic middleware, are explained within the
context of distributed systems and robotics.

Keywords—robotics; middleware; framework; ROS; RSB;
IDL; comparison; content-based filtering; distributed system;
logically unified bus; publish/subscribe.

I. INTRODUCTION

Robotics, in essence, provides useful functions to our daily
lifes and to the industry. Over the past century, the scope of
the robotics field has been widened significantly, since the
usage of robots have been essential. Moreover, challanges in a
robotic system is increased to fulfil newly defined more
complex tasks. These complex tasks often require interaction
with the physical world. With the help of interdisciplinary
solutions (image processing, speech detection, behavior
algorithms, perception algorithms, sensor fusion, and control
systems) we now can overcome the 21st century tasks.
However, these solutions increase the complexity of our
robot's software architecture drastically and raises the load on
the hardware. We therefore need software frameworks and
tools that will help us reach our design goals by providing
communication layers, parallelization, software packages,
debugging and visualization utilities. Thus, with the help of
those frameworks and tools, we are able to develop robotic
applications efficiently and easily.

Since the most of the robotic applications are based on
distributed systems, the requirements and challanges of
distributed systems such as scalability, openness, and
heterogeneity have to be fulfilled in robotic systems [2]. There
are many robotic frameworks developed so far, such as ROS
[1], RBS [3], YARP [4], aRDx [5], OpenRTM [6], Orocos [7],
Microsoft Robotics Studio [8], which aim to fulfil different
requirements and characteristics of a robotic system. For
example, the robotic framework RBS is developed essentially
to provide a more open platform and to overcome the
challanges in cross-compiling [3]. However, none of the
frameworks are yet to achieve the best characteristics a system
could offer.

In this paper, an informative and comparative research on
two of the robotics middleware, ROS and RSB, is presented.
The main characteristics and goals, software architecture, and
applications and tools of those frameworks are addressed.
Additionally, the requirements and needs of a robotic system
and how they are issued in ROS and RSB frameworks is
discussed.

II. ROBOT OPERATING SYSTEM

ROS (Robot Operating System) is a completely open-
source and flexible robotic framework that provides the some
services expected from an OS (such as hardware abstraction,
low-level device control, message passing between processes,
and package management) which is widely used in robotic
systems and applications [9][10]. Its main purpose is to create
a common platform for robotics where collaborative work of
robotic applications are shared and improved. It can be
described as an ecosystem of robotics, where large-scale
packages, libraries, and services are included [9].

One can use ROS in order to create software applications
for robotics, simulate them, and associate them to low-level
drivers in a structured manner. For that purpose, ROS provides
support to many popular robot platforms such as Pioneer
Robots [11], EvaRobot [12], Clearpath robots [13], NAO [14]
and many more [15]. It also provides sensor drivers for many
rangefinders (such as Lasers, Lidars and Radars), cameras,
GPS (Global Positioning System), and IMU (Inertial
Measurement Unit) sensors. The main goals and
characteristics, software arcitecture, and applications and tools
of ROS are detailed in the following part of this section.

A. Main Goals and Characteristics

In [1], when ROS was introduced for the first time, design
goals of ROS was said to be being peer-to-peer (P2P), tools-
based, multi-lingual, thin, and open-source. However, due to
the recent developments in ROS, we could easily extend this
list by adding characteristics such as distributed structure,
modular design, availability of tools and services, and active
community [16]. We can rearrange and extend the
characteristics of ROS as follows:

1) Openness: Due to its open-source nature and package
based structure, it could be said that ROS provides open
services for robotic development. The ease of collaborative

improvement in ROS is definitely one of the many good
reasons to use ROS for your robotic system. ROS also
provides tools, and an environment to create tools; which
makes it even more open. ROS is also a flexible and
adaptable system due to its use of open standarts, such as BSD
coding standarts, and use of standart debugging tools [17].

2) Heterogeneity: According to [2], heterogeneity of a
system is the ability to work on a variety of hardware and
software platforms. ROS is currently available for over 100
robots [15] which uses different software platforms such as
Ubuntu, OS X (experimental), Android (experimental), and
Arch Linux (experimental) [18]. It also provides drivers for
many controllers and sensors. Moreover, ROS supports 5 main
development languages which are C++, Phyton, Lisp, Octave
[1] and Java [46]. It also provides several 3rd party MATLAB
interaction tools using Java WebSockets and rosbridge tool.
One example of this would be MATLAB-ROS
Communication and Control Interface developed in [55].

ROS takes care of the cross-language development issue
by using a simple interface definition language (IDL) to
describe message passing between modules. IDL files are
simple text files that describe the message type and name that
is passed between the modules [1]. An example of IDL
regarding 3-dimensional acceleration message is illustrated
below [19]:

geometry_msgs/Vector3 linear

geometry_msgs/Vector3 angular

In this example geometry_msgs/Vector3 is another
message type which includes float type vector which has x, y,
and z components.

By the definition given in [2], we could easily say that the
heterogeneity is a very crucial aspect of ROS, considering its
platform & hardware support, software support, cross-
language development solution and multi-linguality.

3) Communicating via P2P: Any robotic system built with
ROS is a peer-to-peer network where every processes tend to
communicate with each other instead of communicating with a
central server [1][20]. In ROS, peer-to-peer connection
configuration occurs in XML-RPC, which is a protocol that
uses XML to encode and HTTP to transfer data [21][22]. A
peer to peer network is given in Fig 1.

Fig. 1. A peer-to-peer network [20]

By providing this characteristic, they want to avoid having
mass network traffic in the central server [1] and share
resources with every single peer [20]. The mechanism in

which processes find each other at runtime is called name
services[1]. This topic will be discussed in the Architecture
part of this section.

4) Easy to Cross-compile: We know gathering up
dependencies and trying to build systems in Unix systems to
be hard and overwhelming sometimes. ROS achieved to make
a system where standalone libraries have no dependencies on
ROS [1]. For building projects, they use the CMake method,
which is a cross-platform building tool which compiles
systems independently from compilers and platforms [23][1].
To make compiling even more straightforward, ROS uses a
build system for its macros and infrastructure called catkin, in
which CMake's ability to find dependencies and packages is
used [24]. Catkin is an improvement on ROS' previous build
system rosbuild. By using catkin_make command, for
example, users can easily compile most of the packages
automatically, without having to care about the dependency
issue.

B. Software Architecture

As stated in this section, ROS uses XML-RPC protocol for
its back-end, which is a protocol that uses XML to encode and
transfer data within HTTP transport layer [21][22]. However,
in order to transfer topic message transportation, ROS uses
TCPROS [55], which uses TCP/IP sockets to deliver a
message.

In order to develop software using ROS framework, one
should understand how different elements in message passing
structure are addressed in it. ROS uses a message-driven
publish/subscribe architecture between its nodes[1][25]. A
ROS node is a process that can communicate with other nodes
by publishing or subscribing messages[25], using interprocess
communication. To handle the complex single-bus message
passing between nodes, strings called topics are created which
represent the communication channels between nodes, to
demonstrate in which channel the data are published and from
which channel they are subscribed [26][27][1]. As it is
described in part A of this section, ROS uses messages in IDL
format, which can be processed by nodes easily. To illustrate
this process interaction we can consider Fig 2.

Fig. 2. An illustration of the usage of nodes and topics in ROS

In Fig 2, ROS nodes and topics regarding an example
mobile robot is illustrated. Circles represent the nodes
(processes) of the system whereas the rectangles represent the
topics (message channels). It could be said by looking at the
figure that a node can subscribe and publish to more than one
topics [1]. To understand the architecture we can see that the
node representing the low level architecture of the robot,
/Robot_Driver, subscribes to sensor topics 1, 2, 3, and 4;
while it is publishing the system clock to the
/environment_clock topic, for other nodes to use.
Moreover, each topic carries a type of message. For example,
the topic /cam3d/RGB/image represents a camera image and
it carries a message of type sensor_msgs/Image. Sensor_msgs
is one of the many message libraries developed under
common_msgs by ROS that carries message types belonging
to many types of sensors [28]. ROS also includes primitive
type and geometry related message collections such as
std_msgs, and geometry_msgs, respectively [29].

In Fig 2, rosout can be described as the node ROS uses in
order to log messages which is of type rosgraph_msgs/Log.
Moreover, ROS uses its own environmental nodes and topics
in order to complete the architecture [30]. We are able to
subscribe or publish to those topics to handle the ROS
environment as well. Moreover, we can also subscribe or
publish to simulators (such as GazeboSim [31]) in order to
simulate our robot application. With the help of this
convenient access to simulator and low level components
using ROS nodes, one can also create Hardware-in-the-loop
(HIL) simulations using ROS [32].

In most of the distributed applications and robotic
applications, it is often required to do a remote procedure call
(RPC), which is a request-response protocol [33]. Previously
described architecture of ROS at which messages are passed
by publishing and subscribing can not satisfy the RPC
protocol [1]. To do such a thing, ROS offers services, which
manages reply and request messages [34]. A service can only
accessed by only one node at a time [1], which supports the
RPC type communication. Additionally, just like topics,
services have service types [34] which can be managed by
using rosservice command.

In many applications, we often need to start more than one
nodes at a time and configure their parameters. To
structuralize the node initizalization, ROS offers a tool called
roslaunch which is an application that can run multiple nodes
and configure ROS parameter server parameters by using an
XML-based text file (called .launch file) [35]. A simple launch
file in ROS would look like the following [36]:

<launch>
<node name="talker" pkg="rospy_tutorials"
type="talker" />
 </launch>

C. Tools and Applications

ROS offers a set of debugging and visualization tools with
which users can visualize their software structure and
troubleshoot. To visualize the topic messages, rqt_plot could
be very useful [37]. By using this tool, one can make graph
related to robot positioning, velocity, image and laser data and

so on. This would help when simulating and debugging the
software of a robot. Moreover, another tool called rqt_graph
allows us to visualize the work architecture, which can also be
useful when debugging the computational tree of the nodes in
a system [38].

Fig. 3. rqt_plot and rqt_graph tools, respectively [37][38].

To visualize more complex 3D data, ROS offers a 3D
visualization tool which is called rviz [39]. Rviz is mostly used
in PointCloud or Image based applications, but it is very well
capable of visualizing robot bases, identifying the
transformation frames (tf [40]), directions, odometry and many
more. Rviz can also import robot models, which are defined
using URDF (Unified Robot Description Format). In Fig 4,
visualization of position change (odometry) and depth
information of a 3D sensor is given, respectively.

Fig. 4. Different types of Rviz visualization [41][42].

Since robots need to be tested and simulated in order to
prevent material loss, ROS offers support to many simulators
such as GazeboSim (3D)[31] and STDR Simulator (2D)[43].
With the help of these simulators, physical environments can
be modelled, sensor behaviors can be described and the robot
behaviors can be simulated. The example of an office
environment built using GazeboSim is given in Fig 5 [10].

Fig. 5. A robot in an office environment built using GazeboSim (ATEKS
project) [10].

III. ROBOTICS SERVICE BUS

Robotics Service Bus (RSB) is a robotic framework
alternative to ROS, which handles its communication using a
logically unified bus, and is event-driven [3]. Even though its
model-based approach comes from its event-driven nature, it
does not provide model based code generation tools. Rather, it
uses event-driven architecture to ease the information sharing.
It uses message passing using channels [44]. RSB can
integrate with other middleware and is designed specifically
for collaborative research [3]. In order to achieve that, RSB
focused on the hierarchical structure and back-end of its
architecture, in order to provide a solution to improve the
existing middleware. RSB's event-driven communication
resembles ROS's message-driven type-based publish/subscribe
architecture [1][25], but RSB aims to present a more hierarchy
in its channels [3]. In addition, RSB presents content-based
filtering visible to the transport layer, aiming to optimize more
[3]. We can by no means say that RSB has the huge
community support that ROS does. However, contributers are
starting to build up a set of utilities and tools, and the
ROS/RSB bridge described in [45] provides transport-level
integration with ROS Client API and RSB back-end, allowing
some scripts of ROS to be integrated with RSB. Following
part on this section will cover main goals and characteristics,
software architecture, and tools and applications of RSB
middleware.

A. Main Goals and Characteristics

RSB presents an approach to allow collaborative research
by fulfiling the requirements of such systems, such as
openness, and scalability [3]. Its main goals are to allow
sufficient portability (openness property), introspection
support, integration with other middleware, and allowing the
framework to be altered for optimization (low framework
lock-in) [3]. In [46], the group who are currently developing
and maintaining RSB, CoR-Lab points out some of the issues
related to other middleware. Most crucial issues can be listed
as the following [46][3]:

 Frameworks have large footprint that does not satisfy
the needs of some embedded systems.

 Insufficient integration with other frameworks

 Insufficient error handling strategies

 Unalterable framework structure (high framework
lock-in) or unspecified architecture that makes them
difficult to be optimized.

RSB takes these issues into account and presents a new
approach to robotic frameworks, which reduces the framework
lock-in, allows integration of different systems, and still
provides sufficient functions for a robotic task [46][3]. The
following part is dedicated to explain how some
characteristics in ROS are addressed.

1) Openness: Openness is a system's ability to be easily
adaptable, portable, flexible, and interoperable which means
that it should be easily changable, satisfy certain standarts, run
on different hardware and software platforms, be easily
managable and operate with other systems from the same

scope [2][3]. To address these properties, RSB brings many
new approaches to the robotic framework area. First of all,
RSB uses the RST project [47] for its message definitions,
which is a type specification that uses IDL externally, to have
a standart data type in its applications [3][47]. By using IDL
externally, they provide a system which is not limited to RSB
only. Secondly, RSB provides interoperability support by
implemented bridge software with other robotic middleware
such as ROS-RSB bridge [3]. Finally, in order to overcome
the portability issue, RSB introduces dependency graph which
does prevent it from having multiple layers of dependencies.
Instead, RSB has a dependency graph that has standart
libraries [3], which ease the drudgery of cross-compilation.

2) Scalability: A systems ability to scale means that the
stability of them should be independent from the number of
processing nodes. In order to scale the size of the systems,
efficient processing is crucial [3]. RSB includes three different
transports which are Spread-based transport, network-based
transport (using TCP), and in-process transport [3]. In order to
manage complex distributed systems, RSB's Spread-based
transport provide wide area group communication system
[48]. As for the performance, although benchmark tests in [3]
showed that ROS has the most efficiency in all of the tested
middleware, RSB claims that their roundrip performance is
sufficient for robotic applications.

3) Heterogeneity: RSB provides full support for C++,

Java, Phyton, Lisp, and partial support for Matlab [46], and
most of the RSB packages are available for operating systems
such as Linux, MacOS, and Windows; which shows that RSB
is able to run on many hardware and software platforms [49].

4) Interospection Support: RSB provides an interospection

namespace [50] and interospection based tools to make us able
to keep track of the communication, which are used to log and
replay the data streams with a common format [3]. These tools
are used when analyzing the timing of the communication [3].

B. Software Architecture

As mentioned, RSB presents an event-driven and message-
oriented communication architecture where a logically unified
bus which is established across several transport layers and
has channels according to hierarchy [46]. In Fig 6, RSB API is
given, where content-based message filtering, event
processing, and Converters are located in Extension-Point
API, and high level communication and infrastructure are
located in User- Level API. RSB's architecture is structured
using three models.

Fig. 6. RSB API [46].

1) Event Model: Events are actions that trigger data
exchange [3][46]. An event has many components such as an
ID, a payload, a destination scope (reciever of event
notification), a causal vector; and an event comes with a meta
data class attached to it [44]. As an analogy, we can relate the
terms of the event model to a timed automata. Payload of an
event is expression of actual transmitted data, whereas the
causal vector represents the expression of the emitted (sent)
trigger [3]. Meta data class, however, is responsible for
providing timestamps to make the event traceable [3].

2) Notification Model: The Notification Model of RSB

describes the data transmission and reception between events
[3]. Units which handle event sending are called Informers,
whereas units which handle event reception are called
Listeners [3]. We could relate informers and receivers to ROS'
publisher and subscriber nodes. Participants, which
participate in data transmission and reception first has to
connect to the so-called logically unified bus via a Channel.
This channel is realized by many Connectors which represent
the lowest level in RSB communication which exchange
Notifications in a transport layer (see Section III Part A) [3].
Connectors in the system uses Converters to serialize (or
deserialize) the event to exchange a Notifications on different
transport layers [3]. As eloquently illustrated in Fig 7 by [3],
we can think of Notifications as the event descriptions in
transport layers.

Fig. 7. Conceptual overview of RSB model [3].

When dealing with hierarchy in its channels, RSB uses the
Scope approach, compared to ROS' topics. [3]. With this
approach, the implication is that a scope could only be visible
to higher hierarchial scopes and to the scope itself in the
channel [46]. Fig 8 illustrates the hierarchy in channels, which
shows that notifying /radar/accel/ will appear to /,
/radar, /radar/accel, but not to /radar/accel/x.

Fig. 8. Event scope example

3) Observation Model: Observation model of RSB is the
model that provides a solution to unrelevant event reception
and also to event handling [3]. Event restriction is done by
Filters attached to the Listeners [3]. In this model, Filters are
responsible for restricting the events by running series of
content-based filtering algorithms. Handlers, however, are
used simply to handle event listening, i.e in order to act upon a
received event, we use Handlers as callback functions [3].

C. Tools and Applications

RSB provides some utilities such as logger, introspect,
send, call that runs from the command line [51]. These tools
are used for logging real-time data, analysing RSB systems,
sending events, and calling server methods, respectively.
Additionaly, web tool allows users to inspect an RSB system
by providing a web interface [51]. RSB also provides time
synchronization via command line. The rsb_timesync
command could be used to synchronize different scopes of a
system [51].

As stated before, RSB provides bridge tools for other
frameworks which would make us run some third party tools
created for other frameworks [46]. Moreover, RSB provides
support for some third party applications such as Vicon, ISR,
XTT and Pamini to handle operations such as motion
detection, speech recognition, task handling and modeling
[46].

So far, most of the RSB's functionality was used and tested
in a couple of applications using the robots NAO [14], Oncilla
(AMARSi project) (seen in Fig 9) [52] and a kinetic robot
manipulator [53][3]. Moreover, RSB is being used for
educational purposes at Bielefed University [3].

Fig. 9. The AMARSi Project (using Oncilla) [52].

IV. COMPARISON AND SUMMARY

This section is dedicated to summarizing the differences
between ROS and RSB, two middleware that are in demand
and was discussed in sections II and III. Table 1. shows the
differences between middleware ROS and RSB compared by
using different properties. In the table, it is seen that both
middleware have strong sides and drawbacks. At the first
glance, it is seen that the communication side of RSB looks
more advanced, whereas the ROS shine out when it comes to
the utility support.

Table 1. ROS-RSB Comparison Table (Table derived from
[46][3][15][54]) - (*:experimental)

 ROS RSB

Approach Message-driven
Publish/Subscribe

Event-driven,
Message-oriented

Topology [46] 1:1 m:n

Transport Layer HTTP (XML-RPC),
and TCP (TCPROS)

Spread-based, TCP-
based, in-process
transport

Channel Hierarchy No Yes

Centralized [46] Yes (master) No

Filtering Yes (message
filters)

Yes (content-based
event filters)

IDL type message Yes Yes, external IDL
(RST project)

Alterability Low High

OS Compatibility Ubuntu, OS X *,
Arch Linux *,
Android *

Linux, OS X,
Windows

Programming
Language Support

C++, Python, Lisp,
Octave, Java [46],
Matlab (3rd party
apps, rosbridge)

C++, Phyton, Lisp,
Java, Matlab (via
Java) [46]

Roundtrip
Performance [3]

Sufficient, Higher
than RSB

Sufficient [3]

Logging/Bagging
Tools

Yes, rosout and
rosbag

Yes, rsb logger

Simulator Support GazeboSim, STDR,
and more

(Not known)

Robot/ Sensor
Support

At least over 100
robots/sensors
[15][54]

(Not known)

Community
Support

High Low

of Tools Provided Relatively High Average

Resources ROS API, ROS
Wiki, ROS
Exchange

Only RSB API

V. CONCLUSION

Over the past decade, many robotic middleware were
developed and offered to engineers. The open-source software
community have also contributed to the progress and
development of robotic middleware greatly. On one hand,
RSB brings lots of innovations to the future of robotic field i.e
model-driven approach with high optimizability, content-
based event filtering and communication hierarchy. On the
other hand, one might consider ROS to meet the requirements
of his system as it provides drivers and interfaces for many
robots, sensors and simulators that are supported by a huge
community. As the robotic systems become more complex,
there is no doubt that the competition in this field will improve
existing middleware and bring new ones. Moreover, the
evolution of the cyber-physical systems such as robotic
systems will allow new approaches and methods to arise.
Therefore, it is important that engineers make a decision on
the middleware or tools they use by evaluating the existing
solutions, considering drawbacks of each solution and
choosing a solution that provides the optimal use for their
application.

ACKNOWLEDGEMENT

This study is completed as a student research project for
Distributed and Parallel Systems lecture, under Master's
program Embedded Systems for Mechatronics in Dortmund
University of Applied Sciences and Arts.

REFERENCES

[1] M. Quigley, B.Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A.Ng, "ROS: an open-source Robot Operating System,"
in ICRA Workshop on Open Source Software, 2009.

[2] R. Hobo, http://www.remcohobo.nl/DIA/distsysreq.pdf
, 2004.

[3] J. Wienke, S. Wrede, "A Middleware for Collaborative Research in
Experimental Robotics", IEEE/SICE International Symposium on
System Integration (SII), 2011.

[4] P. Fizparick, E. Ceseracciu, D. E. Domenichelli, A. Paikan, G. Metta,
and L. Natale, "A middle way for robotics middleware", Journal of
Software Engineering for Robotics, 2014.

[5] T. Hammer, B. Bauml, "The highly performant and realtime
deterministic communication layer of the aRdx software framework",
16th Advanced Robotics (ICAR), 2013.

[6] G. Biggs, T. Kotoku, "Tutorial workshop I: SICE 2011 OpenRTM-aist
tutorial", SICE Annual Conference (SICE), 2011.

[7] The Orocos Project, http://www.orocos.org/

[8] Microsoft Robotics Developer Studio User Guide, https://
msdn.microsoft.com/en-us/library/bb648760.aspx

[9] About ROS, http://www.ros.org/about-ros/

[10] M. Özçelikörs, A. Çoşkun, M.G. Say, A Yazıcı, U. Yayan and M.
Akçakoca, "Kinect Based Intelligent Wheelchair Navigation with
Potential Fields", INISTA 2014 International Symposium on
Innovations in Intelligent Systems and Applications, 2014.

[11] Adept Mobile Robots, http://www.mobilerobots.com/
Mobile_Robots.aspx

[12] EvaRobot, http://www.evarobot.com, 2015.

[13] ROS Wiki, "ClearPath Robotics", http://wiki.ros.org/
ClearpathRobotics

[14] NAO Robots, https://www.aldebaran.com/en

[15] ROS Wiki, "Robots Using ROS",http://wiki.ros.org/Robots

[16] Is ROS for Me?, http://www.ros.org/is-ros-for-me/

[17] ROS Wiki, "ROS developer's guide", http://wiki.ros.org/
DevelopersGuide

[18] ROS Wiki, "ROS Installation", http://wiki.ros.org/ROS/
Installation

[19] ROS Wiki, "geomertry_msgs", http://wiki.ros.org/
geometry_msgs

[20] peer-to-peer (Definition),
http://searchnetworking.techtarget.com/definitio
n/peer-to-peer

[21] G.G. de Rivera, R. Ribalda, J. Colas, J. Garrido, "A generic software
platform for controlling collaborative robotic system using XML-
RPC",IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, 2005.

[22] CMake Project, https://cmake.org/

[23] ROS Wiki, "Catkin Conceptual Overview", http://wiki.ros.
org/catkin/conceptual_overview

[24] ROS Wiki, "Understanding Nodes", http://wiki.ros.org/
ROS/Tutorials/UnderstandingNodes

[25] Core Components, http://www.ros.org/core-components/

[26] ROS Wiki, "Topics", http://wiki.ros.org/Topics

[27] ROS API Documentation, "sensor_msgs", http://docs.ros.org/
jade/api/sensor_msgs/html/index-msg.html

[28] ROS API Documentation, http://docs.ros.org/jade/api/

[29] ROS Wiki, "rosout", http://wiki.ros.org/rosout

[30] GazeboSim, http://gazebosim.org/

[31] S. Ayasun, A. Monti, R. Dougal, and R. Fischl, "On the Stability of
Hardware in the Loop Simulation", http://vtb.engr.sc.edu/v
tbwebsite/downloads/publications/hil_imacs02.pdf

[32] What is Remote Procedure Call?, http://searchsoa.
techtarget.com/definition/Remote-Procedure-Call

[33] ROS Wiki, "Services", http://wiki.ros.org/Services

[34] ROS Wiki, "roslaunch", http://wiki.ros.org/roslaunch

[35] ROS Wiki, " XML", http://wiki.ros.org/roslaunch/XML

[36] ROS Wiki, "rqt_plot", http://wiki.ros.org/rqt_plot

[37] ROS Wiki, "rqt_graph", http://wiki.ros.org/rqt_graph

[38] ROS Wiki, "rviz", http://wiki.ros.org/rviz

[39] ROS Wiki, "tf", http://wiki.ros.org/tf

[40] Wheeliebot: A Server Controlled Video Streaming Indoor Navigation
Robot, http://thewebblog.net/portfolio/
projects_wheeliebot.php

[41] Kinect on ROS, http://estanciaitesm.blogspot.de/

[42] ROS Wiki, "STDR Simulator", http://wiki.ros.org/
stdr_simulator

[43] RSB 0.13.0 Documentation, "Concepts", http://docs.cor-
lab.org/rsb-manual/trunk/html/concepts.html

[44] RSB 0.13.0 Documentation, "Ros Integration", https://code.
cor-lab.org/projects/rsb/wiki/RosIntegration

[45] CoR-Lab, "RSB-Robotics Service Bus A Lightweight Event-driven
Middleware", https://code.cor-lab.de/projects/rsb/
repository/rsb-talks/revisions/master/entry/
overview/talk.pdf, 2011.

[46] CoR-Lab, "RST Project", https://code.cor-lab.de/
projects/rst

[47] Y. Amir and J. Stanton, "The spread wide area group communication
system", Tech. Rep. CNDS-98-4, Center for Networking and Distributed
Systems, The Johns Hopkins University, 1998.

[48] RSB 0.13.0 Documentation, "C++ Installation", http://docs.cor-
lab.org/rsb-manual/trunk/html/install-cpp.html

[49] RSB 0.13.0 API, "rsb::interospection", http://docs.cor-
lab.org/rsb-cpp-api/trunk/html/namespacersb_1_1
introspection.html

[50] RSB 0.13.0 Documentation, "Tools", http://docs.cor-
lab.org/rsb-manual/trunk/html/tools.html

[51] AMARSi Oncilla, https://www.amarsi-project.eu
/oncilla

[52] M. Rolf and J. J. Steil, "Continuum Kinematics Simulation of the Bionic
Handling Assistant", in IEEE Int. Conf. on Robotics and Automation,
(St. Paul, Minnesota, USA), IEEE, 2012, submitted.

[53] ROS Wiki, "Sensors supported by ROS", http://wiki.ros.org/
Sensors

[54] MATLAB-ROS Communication and Control Interface,
http://thewebblog.net/portfolio/projects
_matlabrosinterface.php

[55] ROS Wiki, TCPROS, http://wiki.ros.org/ROS/TCPROS

