
Combining Eclipse IoT Technologies for a RPI3-Rover along with
Eclipse Kuksa*

Robert Hoettger1, Mustafa Ozcelikors1, Philipp Heisig1, Lukas Krawczyk1, Pedro Cuadra1, and Carsten Wolff1

Abstract— Developing open source software has proven to
provide benefits to customers and OEMs vise versa [1]. IoT
and Cloud development activities have already been around
for decades and huge communities have grown among an
immense variety of applications. However, the vehicle domain
just recently approaches the connected era and still faces many
challenges stemming from security, safety, reliability, real-time,
or more demands. Such demands are also the reason for
mandatory adaptations of existing technologies. Hence, Kuksa,
i.e. an open-source platform, addresses such specific demands of
the connected vehicle era and further uses and extends existing
technologies to ease development, analysis, and activities for IoT
and Cloud-based approaches for vehicles and provide a basis
for new application fields. This paper presents a comprehensive
description of technologies and their specifics towards secure
data transmission and device management services.

I. INTRODUCTION

IoT and Cloud platforms are estimated to count more
than 1000 worldwide [2]. Many platforms comprise huge
communities and continuously advance existing or add new
technologies to cope with increasing demands of the respec-
tive domain. The vehicle industry is one of the domains that
just recently enters the open source IoT and Cloud market.
Eclipse IoT [3] is one of the biggest communities that hosts
a huge variety of protocol implementations (REST, MQTT,
etc.), cloud back-& front-ends, m2m management, device
management, OTA update methodologies, security and au-
thentication approaches among others. Eclipse Kuksa [4] is
a recent project to fill the missing gaps in order to introduce
respective applications and technologies to vehicles.

The remainder of this paper is organized as follows.
Section II describes the Eclipse Kuksa technologies briefly
upon their utilization, adaption, or extension as well as their
interaction with each other. Section III then presents the IoT
stack of Eclipse Kuksa in more detail. Afterwards, Section IV
outlines specifics about the RPI3 Rover, its hardware, main
components, and applications. Finally, Section V concludes
the current status of the implementations and provides in-
sights into results that could be obtained from applications
across a use-case with three Rovers. Furthermore, the section
presents issues and topics to be addressed in upcoming work.

*This work was been supported by the German BMBF under funding.No.
01—S16047D

1All authors are with IDiAL Institute, Dortmund University of Ap-
plied Sciences and Arts, Otto-Hahn-Str. 23, 44227 Dortmund, Germany
robert.hoettger@fh-dortmund.de

II. ECLIPSE KUKSA
Eclipse Kuksa [4] has its origin in the publicly funded

APPSTACLE project [5] that started in early 2017. Various
companies, suppliers, and research institutes therefore inves-
tigate appropriate ways to introduce adaptable cloud and IoT
technologies to the vehicle domain and avoid proprietary and
commercial solutions.

Figure 1 presents the initial Kuksa architecture that shows
a threefold structure consisting of (a) the in-vehicle platform
based on automotive grade linux (AGL) [6], (b) the cloud
front- and back-end with several technology utilization, and
(c) the developer-IDE that is capable to adapt and extend
both (a) and (b) towards the developer’s specific needs.

C
lo

ud
 

Pl
at

fo
rm

App Store

Ethernet

Central Gateway / Backbone

CAN

ADAS 
Control

Motion 
Control Head Unit Body 

Control

In
-V

eh
ic

le
Pl

at
fo

rmLayers &
Bindings

Ap
p 

ID
EPlug-Ins, WS,

Deployment

Ecosystem

Eclipse

Fig. 1. Kuksa Abstract Architecture

Figure 2 shows the repository structure of Eclipse Kuksa
in order to either build AGL adapted Kuksa images, Spring
Boot applications applicable to the cloud, or integrate tech-
nologies across the connected vehicle domain. The shown
repositories are yet under development and may change in
the course of upcoming Eclipse Kuksa releases. Figure 2
groups repositories to (i) in-vehicle technologies; (ii) cloud
technologies; (iii) in-vehicle application development; and
(iv) cloud application development respectively. Having this
structure provides a modular design, adaptable continuous in-
tegration possibilities, comprehensive bug and issue tracking,
sophisticated library usage, and a holistic approach towards
the dynamic nature of application evolution of connectivity
approaches and vehicle development activities. Developers
can therewith address either the used technologies themselves



in isolated repositories or design and implement applications
for an arbitrary technology stack within the single Che-based
Kuksa IDE. Nevertheless, Eclipse Kuksa has to continuously
check and test versions and updates on the repositories in
order to guarantee stable development and build processes.

In-Vehicle Technology

In-Vehicle Application Dev
Cloud-Application Dev

Cloud-Technology

Kuksa.meta
meta-kuksa
tooling recipes 

Kuksa.AGL-wrapper
scripts, separate builds 

dep. on licenses
(Yocto & Bitbake)

Kuksa.meta-dev
meta-kuksa-dev

Tools debugging, tracing, 
logging E.g. Kuksa.meta-

rover
rover tools (yocto recipes)

E.g. Rover App 
project

Rover App Instance

build

Eclipse Paho / 
Mosquitto…

Eclipse Che

Eclipse Hono

Eclipse HawkBit

Eclipse Ditto

Eclipse Leshan

Che Kuksa IDE

MQTT AGL 
bindings / lib

Hono AGL 
bindings / lib

Cloud Service
(e.g. raw data 

consumer)E.g. Rover API

AGL-Kuksa
yocto image and 

SDK

AGL
AGL layer subset

Eclipse Keti

Fig. 2. Development Repositories and Technologies

Figure 3 outlines the Grafana dashboard as a typical cloud
front-end visualization tool to access data stored along with
the cloud back-end storage database and visualize data via
a variety of charts and diagrams configurable by the user.
While Grafana is nothing automotive specific, it provides a
brief variety of visualization tools for metrics in form of
time, series, histogram, bar charts, line charts, stacks, and
further customization possibilities.

Fig. 3. Grafana Cloud Visualization Front-End

Finally, Figure 4 gives an overview of the layers necessary
for the Kuksa in-vehicle platform. The four layers Boot
Loader, Operating System, Middleware, and Secure App
Runtime are accompanied by Quality of Service Monitoring
and Authentication and Encryption methodologies. Since
the operating systems has been defined by AGL, several
drivers and interfaces are required to implement connectivity
standards like 5G, LTE as well as in-vehicle inferfaces
such as CAN, LIN, automotive ethernet among others. The
middleware layer further consists of in-vehicle and ex-
vehicle protocol implementations such as MQTT, AMQP,
LWM2M, or eSOC, SOME/IP and others. In addition, net-
work IDS, communication services and the APPSTACLE
API are mandatory functionalities to guarantee automotive-

adequate technologies to address respective requirements.
Furthermore, the Secure APP Runtime contains several appli-
cations for OTA management or IoT connectivity but also the
applications themselves as well as a corresponding intrusion
detection application.

Key	Challenges	I	- In-Vehicle	Architecture

15.01.18 Robert	Höttger,	Johannes	Kristan:	Eclipse	Kuksa	@	IoT	WG 8
M
id
dl
ew

ar
e Communication	Services

In-Vehicle
Protocols

eS
O
C

SO
M
E/
IP

…

Ex-Vehicle
Protocols

M
QT

T
LW

M
2M

…

Application	layer:
- IoT Connector	Application	to	directly	send	vehicle	data	to	the	cloud
- Secure	App	Runtime	to	allow	running	3rd party	apps	on	the	platform
- Application-level	Intrusion	Detection	System

Middleware	layer:
- APPSTACLE	API	to	abstract	the	vehicles	E/E	architecture
- Network-level	Intrusion	detection	system
- Flexible	container	for	in- and	ex-vehicle	communication	protocols
- Communication	Services	Layer	to	provide	a	safe,	secure	and	harmonized	

access	vehicle	data	and	cloud	connectivity

OS	layer:
- Hardware	abstraction	(potentially	through	a	hypervisor)
- Drivers	and	management	functionality	for	the	in- and	ex-vehicle	

interfaces
- Secure	Boot	Loader	&	Platform	Update	Management

Secure	App	Runtime

Special	Apps:	
OTA	downloader
OTA	manager
IoT Connector

App	App	1App	1 Application	
IDS

Au
th
en
tic
at
io
n	
&
	E
nc
ry
pt
io
n

Q
oS

M
on

ito
rin

g

APPSTACLE	API

Network	IDS

Secure	Boot	
Loader

Platform	Update
Manager

O
S	
			 Vehicle2Cloud

Interface
Phy/MAC5G LT

E …

In-Vehicle
Interface
Phy/MACCA

N
Et
he

rn
et

…

Fig. 4. AGL-based In-Vehicle Architecture

III. RELEVANT IOT STACK

The following subsections outline the Eclipse Kuksa
relevant open source technologies and the cloud platform
architecture.

A. Eclipse Ditto

Within the IoT, classical embedded software develop-
ment and web development come together. However, both
disciplines have a very different culture: While embedded
software development focus often on reliability and safety,
developing web application development requires speed and
feature richness. Thus, integrating both worlds introduces
several problems. In order to cope with them, the digital
twin metaphor has been proposed. A digital twin allows to
have a digital representation of all capabilities and aspects
that each physical device connected to the internet consists
of. This offers the possibility to access and alter the state of
a device in a controlled manner. Eclipse Ditto [7] provides a
platform to realize the digital twin metaphor. More precisely,
it provides functionality to address the following aspects:

• Device as a Service: Higher level API to access devices
• State management for digital twins including notifica-

tion of state changes
• Digital Twin Management: Provides meta-data based

support to search and select digital twins
The API of Eclipse Ditto is realized as REST-API, which

allows to have a backend-less realization of IoT applications.
In this way, software developers for IoT application can



concentrate on the business logic and user experience without
the hassle to integrate different protocols and device types.

B. Eclipse HawkBit

Eclipse hawkBit [8] is a backend framework released
under the EPL to roll out software updates to constrained
edge devices. With the challenge of a safe and reliable
remote software update process in mind, the project aims
to provide an uniform update process. This allows to avoid
duplicate work for implementing mechanisms separately in
each software component. Therefore, hawkBit provides a
backend server that can be deployed in any cloud infrastruc-
ture. It helps managing roll out campaigns, e.g. by defining
deployment groups, cascading deployments, emergency stop
of rollouts, and progress monitoring. Further, it offers sev-
eral device management interfaces on which management
messages and updates can be exchanged. However, hawkBit
does not provide a client for edge devices by default.
To connect certain devices, an adapter implementation that
understands the protocols is needed. Those protocols in the
Device Management Federation (DMF) API are AMQP,
ODA-DM, and LWM2M. Also software can be delivered
to edge devices through a REST API. At the cloud side,
hawkBit ships a web-based UI for management purposes.
Within the UI, all management functionalities are ready to
use with a few clicks. In regard of the rising IoT cloud
service infrastructure also interfaces for integrating hawkBit
into other applications are accessible. Currently, a REST API
exposes the functionality of the backend server towards other
applications. For a more convenient use, hawkBit also helps
managing roll out campaigns, e. g. by defining deployment
groups, cascading deployments, emergency stop of rollouts,
and progress monitoring. One of the features on the roadmap
is the integration of Eclipse Hono (cf. Section III-D) as DMF
provider.

C. Eclipse Leshan

Eclipse Leshan [9] is an implementation of the LWM2M
protocol in Java. It provides implementations for the client as
well as for the server side. Leshan uses Eclipse Californium
to communicate via CoAP and relies on Eclipse Scandium
for establishing a datagram transport layer security. Fur-
thermore, there are libraries available that help people to
implement their own LWM2M server and client side.

D. Eclipse Hono

The Eclipse Hono project provides a platform for the
scalable messaging in the IoT by introducing a middleware
layer between back-end services and devices. Thereby, the
communication to back-end services takes place via the
AMQP protocol. If devices can speak this protocol directly,
they can transparently connect to the middleware. Otherwise,
Hono provides so called protocol adapters, which translate
messages from the according device protocol to AMQP.
In this way, Hono’s core services are decoupled from the
protocols that certain applications are using. Via AMQP 1.0

endpoints, Hono provides APIs that represent four common
communication scenarios of devices in the IoT:

• Registration
• Telemetry
• Event
• Command & Control
Eclipse Hono consists of different building blocks. The

first are the protocol adapters, which are required to connect
devices that do not speak AMQP natively. Currently, Hono
comes with two protocol adapters: One for MQTT and the
other for HTTP-based REST messages. Custom protocol
adapters can be provided by using Hono’s API. Dispatch
router handles the proper routing of AMQP messages within
Hono between producing and consuming endpoints. The
dispatch router in Hono is based on the Apache Qpid project
and designed with scalability in mind so that it can handle
potentially connections from millions of devices. As such it
do not takes ownership of messages, but rather passes AMQP
packets between different endpoints. This allows a horizontal
scaling to achieve reliability and responsiveness. Event and
commands messages, which need a delivery guarantee, can
be routed through a broker queue. The broker dispatches
messages that need some delivery guarantees. Typically, such
messages are mainly from the command & control API.
The broker is based on the Apache ActiveMQ Artemis
project. While devices are connecting to the Hono server
component, back-end services connecting via subscribing to
specific topics at the Qpid server [10].

Among the routing of messages, Hono consists of a device
registry for the registration and activation of devices and the
provision of credentials as well as an Auth Server to handle
authentication and authorization of devices. By using an
InfluxDB and a Grafana dashboard, Hono comes also along
with some monitoring infrastructure. Due to its modular
design, also other AMQP 1.0-compatible message broker
than the Apache ActiveMQ Artemis can be used.

E. Eclipse Keti

Eclipse Keti is an application that allows to authorize the
access of users to resources by applying the attribute based
access control principle. In general, it is used to secure the
communication of RESTful APIs. Whether a user can access
a resource is decided based on evaluating rules with attribute
values as input. An attribute either refers to a user, resource,
or environment variable. Multiple rules can be combined
into a policy that comprises (i) a target that matches a
given request to corresponding policy; (ii) a condition that
contains the specific authorization logic; and (iii) an effect
that specifies the impact an authorization decision.

Eclipse Keti is realied as a Spring Boot application and
consists of three major components:

• Policy evaluation: Conducts the evaluation of every
authorization request.

• Policy management: Allows to update and maintain the
set of policies.

• Attribute store: Maintains the user and resource permis-
sions captured using attributes.



In addition, Eclipse Keti relies on spring-security-oauth to
secure its own endpoints.

F. Keycloak

Keycloak is an application that allows to manage the
identity of users (authentication) and their access to resources
(authorization). When building an application, Keycloak al-
lows to delegate the user authentication process to substan-
tially reduces the related implementation overhead for the
application. It provides an user with single sign on to access
all applications registered at a particular Keycloak instance.
In addition to serving as an identity provider, Keycloak is
also capable of incorporating existing providers, e. g. social
networks. Keycloack supports authentication processes that
rely on the protocols OpenID Connect and version 2.0
of the security assertion markup language. Authorization
is conducted using version 2.0 of the Open Authorization
(OAuth) protocol. By using Keberos, Keycloak allows to link
user information from other identity management systems,
such as LDAP or Active Directory servers. Authentication
and authorization is organized within Keycloack via so-called
realms. A realm comprises a set of registered users as well
as applications. The authentication within a realm is either
realized by supplying a separate identity service or enabling
the access to a set of existing identity providers. Users that
are part of the realm may be federated with other data
by attaching additional identity management systems. The
access to resources is steered by defining roles and assigning
them to users. An admin console provides means to modify
the realm settings, while users can manage their accounts
by using a separate interface. There are a set of Keycloak
client adapters that enable the communication employing the
protocols mentioned above. Depending on the protocol, also
implementations in various programming languages exists,
such as Java and JavaScript. Some of them provide tight
integration with specific platforms, for example Spring Boot
and WildFly.

G. AGL

AGL (Automotive Grade Linux) is a Linux Foundation
Workgroup dedicated to creating open-source software solu-
tions for automotive applications. The initial target for AGL
is to provide an IVI (In-Vehicle-Infotainment) system [15].
For providing this kind of systems, AGL uses Yocto Project’s
building system. Thereby, being able to produce a Linux
System image and a Cross-Developement toolchain [16].

However, in order to integrate Kuksa-specific tools, soft-
ware, and functionalities, AGL’s building system was ex-
tended by including three layers on top of AGL:

• meta-kuksa: contains Kuksa’s code base and all its
dependencies that are not included in AGL, e.g. MQTT
libraries.

• meta-kuksa-dev: contains extra packages that are useful
for the development- and testing-only, e.g. Valgrind,
gtest.

• meta-rover: contains all packages needed to enable the
RPI3 Rover’s runtime software. Basically, it provides

recipes for rover-app [12], rover-web [13], and their
dependencies in [14].

Furthermore, the Kuksa.AGL-wrapper [17] is an EPL
licensed repository that holds the scripts to integrate Kuksa-
specific layers with the building system already provided by
AGL.

H. Eclipse Che

Eclipse Che is an open source EPL licensed multi-
user cloud Integrated Development Environment (IDE) and
workspace server. Typically, it can either be utilized by its
Browser IDE (Frontend, cf. Fig. 5), or by directly connecting
to the resp. workspaces that are realized as customized
docker containers, which bring their complete runtime envi-
ronment, e.g. an Ubuntu based installation with Java, Maven,
and/or a C/C++ tool chain. In contrast to typical IDEs, the
concept of having workspaces with runtime stacks allows
to skip the setup time for end-developers by sharing proper
configurations, e.g. with example projects and tutorials. In
Kuksa, Eclipse Che has proven to be a valuable asset for
developing a variety of applications and projects, such as
AGL (services, drivers, or applications such as ACC) for
different hardware platforms, or Spring Boot.

Fig. 5. Eclipse Che development environment

IV. RPI3 ROVER

To investigate, demonstrate, and evaluate the aforemen-
tioned open-source technologies along with the standards
and cloud infrastructure proposed with the Eclipse Kuksa
project, an open-source test platform is developed in form
of a Raspberry Pi 3 based Rover that is shown in Figure 6
and described in the following.

The RPI3-Rover [14] is a mobile robot that has several
features addressing various tasks such as actuation, sensing,
communication, and visualization. The Rover’s Raspberry Pi
3 features AGL as the operating system, while sensing is
accomplished by getting input from several sensors, such as
infrared proximity sensors, ultrasonic proximity sensors, a
compass, accelerometer, temperature sensor, and a camera.



Fig. 6. RPI3-Rover

The Rover also consists of two brushless DC motors for
actuation and an OLED display for visualization. With the
developed software, i.e. the rover-app, the Rover is able
to achieve several tasks such as following another robot in
adaptive cruise control mode, being controlled via a cloud
platform, a wifi-based client, or a bluetooth-based client,
camera streaming, image and sensor processing, sensor
information visualization etc. in a multi-threaded manner.
Additionally, the Rover’s application programming interface
(Rover API) [11] provides developers with a comprehensive
library for user application development such as the already
developed aforementioned applications.

Fig. 7. Rover Telemetry User Interface

The Rover has been developed with a complete open-
source work-flow in parallel with Eclipse Kuksa develop-
ments. For its release, the AGL software development kit
(SDK) has been adapted using embedded Linux tools Yocto
build system and BitBake build engine. By using these
tools, necessary dependencies for the Rover are built and
installed for AGL from custom recipes. Thus, the Rover’s
compatibility with AGL and other embedded Linux distri-
butions is significantly achieved. Furthermore, Eclipse Che
allows to configure Rover’s AGL SDK for easy open-source
development activities.

Rover is developed especially for developers who want to
address cloud-based communication in cyber-physical scene-
rios. Figure 8 shows the test environment setup prepared for

Rover using Rover’s API and relevant open-source cloud-
related technologies. Rover API utilizes Eclipse Paho MQTT
client implementations in an object oriented manner for
MQTT-based cloud communication. Using this implemen-
tation Rover is able to connect to topics on a cloud instance
that is running Eclipse Hono. Similarly, Rover’s telemetry
interface (shown in Figure 7), a visual MQTT client imple-
mentation that is based on node.js and socket.io, also makes
use of Eclipse Paho MQTT client implementations in order to
connect, publish, and subscribe to the Eclipse Hono instance.
This communication allows multiple Rovers and telemetry
interfaces talk with each other, drive rovers, and visualize
sensor and core utilization information.

Fig. 8. Technologies and communication infrastructure for the Rover

In the cloud server side, one of many available applications
is data statistics visualization. Eclipse Hono takes care of
this by storing information that is sent to the ”telemetry”
topic in an InfluxDB database. Although Grafana’s focus
is to visualize cloud data statistics rather than data itself,
a Grafana dashboard is created to filter the raw data itself
for visualization. Thus, Grafana is able to grab that infor-
mation from the InfluxDB and display the results in JSON-
configurable dashboard. The dashboard configured for the
Rover is given as an example in the Figure 9, which involves
the sensor data visualization over time.

Fig. 9. Grafana dashboard showing Rover sensor data

V. CONCLUSIONS
The Eclipse Kuksa initial public contribution is expected

during Q1 2018. Local tests and use case implementations
along with the Rover have shown that...



• ...the Rover image is extensively smaller (250MB for
Kuksa-AGL compared with 4GB using the Raspbian
OS)

• ...new technologies can be integrated easily without
adjusting the meta-kuksa layer too much

• ...soft real-time applications can be deployed
• ...versioning, issue tracking, and configuration can be

achieved on a modular and fine grained level
• ...browser-based development activities significantly

ease teamwork and leverage the use of required con-
figurations

• ...the utilization of Eclipse open source IoT technolo-
gies is highly beneficial and allows concentrating on
specifics and innovative constructs

In the later course of the project, a holistic API will be
added to the kuksa-dev layer in order to provide easy
access to the various existing and upcoming technologies.
The authors are looking forward to leverage synergies with
established communities as well as technologies in order to
bring automotive based application development activities to
the next level. Therefore, cloud concepts and Spring Boot
applications can perform complex analyses and simulations
as well as upgrade and update applications for vehicles and
therewith make future driving more beneficial for end-users,
developers, tool suppliers, or even OEMs via a common easy
to use architecture.

ACKNOWLEDGMENT

The authors would like to express their appreciation to the
APPSTACLE consortium for sharing experience, expertise,
and knowledge. Special thanks to Johannes Kristan and
Tobias Rawald from Bosch Software Innovations for their
industrial insights into the various Eclipse IoT projects used
in Eclipse Kuksa.

REFERENCES

[1] The advantages of open source tools, Kayla Matthews,
jaxenter 21.11.2017, https://jaxenter.com/
advantages-open-source-tools-139026.html, access
February 2018

[2] Create Your Own Internet of Things: A survey of IoT platforms, Kiran
Jot Singh and Divneet Singh Kapoor, IEEE Consumer Electronics
Magazine (Volume: 6, Issue: 2, April 2017)

[3] Open Source Software for Industry 4.0, An Eclipse IoT Working Group
collaboration, October 2017, The Eclipse Foundation, Inc., Made
available under the Eclipse Public License 2.0 (EPL-2.0), Online:
https://iot.eclipse.org/resources/white-papers/
Eclipse%20IoT%20White%20Paper%20-%20Open%
20Source%20Software%20for%20Industry%204.0.pdf,
access February 2018

[4] Eclipse Kuksa: https://projects.eclipse.org/
proposals/eclipse-kuksa, access February 2018

[5] ITEA3 APPSTACLE Project: https://itea3.org/project/
appstacle.html, access February 2018

[6] Automotive Grade Linux: https://www.automotivelinux.
org, access February 2018

[7] Eclipse Ditto Project Proposal: https://projects.eclipse.
org/proposals/eclipse-ditto

[8] Eclipse hawkBit: https://projects.eclipse.org/
proposals/hawkbit, access February 2018

[9] Eclipse Leshan: https://www.eclipse.org/leshan/, access
February 2018

[10] Eclipse Hono: https://www.eclipse.org/hono/, access
February 2018

[11] Rover API: https://app4mc-rover.github.io/
rover-app, access February 2018

[12] Rover APP: https://app4mc-rover.github.io/
rover-app, access February 2018

[13] Rover Web: https://app4mc-rover.github.io/
rover-web, access February 2018

[14] Rover Documentation: https://app4mc-rover.github.io/
rover-docs, access February 2018

[15] Automotive Grade Linux Requirements Specifications: http:
//docs.automotivelinux.org/docs/architecture/
en/dev/reference/AGL_Specifications/agl_spec_
v1.0_final.pdf, access February 2018

[16] Yocto Project Software Development Kit (SDK) Developer’s
Guide: http://www.yoctoproject.org/docs/2.1/
sdk-manual/sdk-manual.html

[17] AGL-kuksa: https://gitlab.idial.institute/
appstacle/agl-kuksa


