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Abstract

Distributing software effectively to multi core, many core, and distributed systems has been

studied for decades but still advances successively driven by domain specific constraints.

Programming vehicle ECUs is one of the most constrained domains that recently approached

the need for concurrency due to advanced driver assistant systems or autonomous driving

approaches.

In this thesis, software distribution challenges for such systems are discussed and solutions

are presented upon instruction precise modeling, affinity constrained distribution, and reduc-

ing task response times achieved by advanced software parallelization. Furthermore, issues

regarding tracing, distributing and power features are discussed in order to create precise

models with APP4MC.

A demonstrator system called A4MCAR has been developed which features not only low

level functionalities such as sensor and motor driving but also high level features such as

image processing, camera streaming, server-based wireless driving via Web, bluetooth con-

nectivity via Android application, system core monitoring features and a touchscreen UI.

Moreover, experiments along the multi-task heterogeneous demonstrator A4MCAR show

that using APP4MC results instead of OS-based or sequential software scheduling on a

distributed heterogeneous system improves its responsiveness in some cases in order to

potentially reduce energy consumption and replaces error prone manual constraint consid-

erations for mixed-critical applications.
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1. Introduction

1.1. Motivation

Developing and distributing software effectively is one of the most important concerns of

today’s software-driven fields. Effective software is surely needed in almost every part of

embedded systems, especially in the fields of automotive, robotics, defense, transportation,

electrical instruments, autonomous and cyber-physical systems. Optimizing software quality

in the above mentioned fields undoubtedly creates a great demand for parallel software

development for the last decades. This great demand caused software engineers especially

in the information technology and embedded system sector to study parallel computing along

with multi- and many- core systems under special real-time constraints.

The digitalization of almost every aspect of our lives as we know it requires systems to be

more and more complex each passing day. While decades ago the computers had single-

core processors, today almost every single computer has at least a couple of cores within

their processors because of the fact that frequency scaling is not possible anymore. The ad-

vancements in processors allowed the development of more advanced systems with efficient

software. For example, NASA’s super computers collect and process data just on the topic

of climate change that will reach 350 Petabytes in size by 2030, which is expected to be the

same to the amount of letters delivered by the US Postal service in 70 years [1]. This should

show how complex applications can be in the century we are living in. Furthermore, one of

the most trending topics, Cloud Computing, which is being studied to make use of complex

computing power of super computers remotely to public users, is being developed day by

day and it will benefit greatly from the advancements in the field of parallel computing.

While parallel computing is used to meet the demands of more complex software, it is also

widely used in more basic and cheap processors in order to execute more tasks with less

resource consumption and cost. This is achieved by proper scheduling techniques. Fur-

thermore, with an efficient software distributed efficiently to a processor’s cores, one can

also make use of less energy consumption features by applying techniques such as under-

clocking a processor. To summarize, developing efficient parallel software is not only useful
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1. Introduction

in achieving advanced computing capabilities but also can help to achieve less energy and

resource consumption, thus decreasing the cost of systems and making them more ad-

vanced and environment-friendly.

1.2. Objective and Contributions

Even though achieving concurrency using parallel computing is crucial, it comes with certain

concurrency issues and often has to introduce new mechanisms to cope with such issues.

Developers have to choose appropriate technologies and also have to consider not only

the hardware constraints but also the software constraints in order to create efficient, safe,

secure and reliable systems.

Before its execution, parallel software has to be delicately planned. The first stage of the

parallel software development involves the Modeling activity. The model is later used for Par-

titioning, Task generation and Mapping stages to come up with an efficiently distributed soft-

ware. In the modeling stage, the hardware and software models have to be created. While

the software model is described by defining runnables, labels, label accesses, runnable ac-

tivations and software constraints, the hardware model is described by defining processor

details, hardware system clock and core information.

After the modeling activity, partitioning is done that determines which group of runnables

belong together and can potentially run in parallel. Partitioning results are combined with

system constraints in order to generate tasks. Finally, the Mapping involves laying out the

details about pinning generated tasks to available hardware units and their cores [2].

While there exist some commercial tools that provide easement in the parallel software

development, recent study done in Germany, namely AMALTHEA4public [3] [4], aims to

provide planning and tracing tools especially for multi-core developments in automotive do-

main with several open source development tools. The successor of AMALTHEA4public,

the APP4MC project [2] provides an Eclipse-based tool chain environment and a de-facto

model standard to integrate tools for all major design steps in the multi- and many-core de-

velopment phase. A basic set of tools are available to demonstrate all the steps needed in

the development process. The APP4MC project aims at providing [2]:

• A basis for the integration of various tools into a consistent and comprehensive tool

chain.

• Extensive models for timing behaviour, software, hardware, and constraints descrip-

tions (used for simulation / analysis and for data exchange).

• Editors and domain specific languages for the models.
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1. Introduction

• Tools for scheduling, partitioning, and optimizing of multi- and many-core architectures

[2].

This thesis aims to investigate and evaluate APP4MC’s performance with a real-world dis-

tributed multi-core system in several aspects. The objectives of this project are as follows:

• Development of a distributed multi-core demonstrator for the APP4MC platform that

involves typical automotive application features.

• Investigation of new trends in parallel software development (such as Real-time Linux

parallel programming, POSIX threads, RTOS, evaluation methods etc.)

• Researching techniques to retrieve information (number of instructions, communica-

tion costs) and system trace from platforms such as xCORE and Linux to achieve

precise modelling with APP4MC.

• In order to achieve optimization goals such as reduced energy consumption and re-

duced resource usage, different affinity constrained software distributions will be eval-

uated and energy features will be invoked to see if the goals can be achieved.

• Developing a basic online parallelization evaluation software that will retrieve schedul-

ing properties such as slack times, execution times, and deadlines from all the pro-

cesses and that will tell which deadlines were met and which not. Also, the software

distribution assessment is in focus as well as investigating methods to develop schedu-

lable and traceable threads and processes.

• Recording detailed system traces in order to provide offline software evaluation and

consequently figuring out means to balance the load on cores.

• Comparing the conventional schedulers of non-constrained affinity distribution (such

as a Linux OS scheduler) to the affinity constrained distribution from APP4MC to see

if performance can be improved.

With the help of the A4MCAR project, which is a demonstrator for the APP4MC project, it

is intended that the Real-time Linux community will benefit from the published libraries and

documentation that involve code snippets and information instructions on how to develop

optimized distributed and parallel software. Furthermore, the Eclipse APP4MC community

benefit from the A4MCAR via advanced tool support for RPI developments, open source

example applications, and validations of APP4MC parallelization results in order to create a

better tooling available to the public. Those results can be used to assess and compare dif-

ferent parallelization scenarios and consequently identify optimal solutions regarding timing

efficiency for the A4MCAR. Thereby, a point of reference can be given as well as an easy

starting point for developers approaching parallelism with their developments.
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1. Introduction

1.3. Methodology

Automotive or any vehicle control related field tends to require sophisticated systems. In

a real-life automotive application, the amount of hardware nodes and software nodes is

comparably high. Since the main focus of the APP4MC environment is to provide parallel

computation tools for the automotive domain, a demonstrator is required that is closely re-

lated to automotive domain and can be further used for troubleshooting APP4MC. For that

purpose, a demonstrator RC-Car called A4MCAR is developed. Although an RC-Car does

not match up the number of nodes used in real vehicles, the A4MCAR has several nodes and

a distributed architecture, thus getting close to a vehicle’s distributed architecture such as

the AUTOSAR used in vehicles while not imposing too much complexity. Furthermore, the

A4MCAR can be used for automotive-like applications that involve motor driving, navigation,

sensor driving, and autonomous features.

The demonstrator, A4MCAR, is equipped with a distributed architecture that involves a 16-

core multi-core microcontroller development board (XMOS xCore-200 eXplorerKIT [5]) and

a 4-core single board computer (Raspberry Pi 3 [6]) with Linux OS. The software nodes with

respect to their priorities and low-level and high-level purposes are distributed along those

hardware modules. The demonstrator is not only designed to match up the capabilities

of a real vehicle but also involves parts that are related to semi-autonomous driving and

control. It can handle wifi and bluetooth connection requests and drive itself accordingly

over a web interface or an Android application. Since the A4MCAR is specifically designed

as a demonstrator, it has the capability to monitor and visualize core utilization and display

it using a touchscreen or its web interface. Furthermore, it is equipped with four ultrasonic

sensors and a camera with image processing embedded to support its autonomous driving

and web interface streaming functions.

In this thesis, the development and parallelism evaluation of the demonstrator A4MCAR as

well as the studies on parallel computing and tracing options are discussed. Obtained re-

sults are used in APP4MC for better development. The remainder of this paper is organized

as follows: Chapter 2 is dedicated to background information on concurrent programming

and design with APP4MC while Chapter 3 is dedicated to explaining the demonstrator de-

sign and implementation. After Chapter 3, Chapter 4 and Chapter 5 will involve information

tracing and system management and results, respectively. The paper will be concluded with

Chapter 6.
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1. Introduction

1.4. Events and Publications

This project has been partially published in several forms. With the supervision of Robert

Höttger, the author submitted a paper on Mixed-critical Parallelization of Distributed and

Heterogeneous Systems [7] using A4MCAR as a demonstrator on the conference Intel-

ligent Data Acquisition and Advanced Computing Systems: Technology and Applications

(IDAACS’2017) held in 21-23 September 2017 in Bucharest, Romania.

Due to the close cooperation of the APP4MC project with the Eclipse Foundation, the author

of this thesis published a contribution called Developing a multi-core enhanced RC-CAR us-

ing APP4MC at the EclipseCon 2016 IoT Day in Ludwigsburg, Germany. The author also

attended to two APP4MC hackathons on the topic of demonstrators in 2016 and 2017 held

at The Eclipse Foundation Europe GmbH with the participation of many partners such as

Robert Bosch GmbH and Fraunhofer IML in Zwingenberg, Germany. The author also partic-

ipated in the unconference event of the conference EclipseCon 2017 France to present the

work done at FH Dortmund regarding the Rover project, which is one of the other demon-

strators of APP4MC. Furthermore, the A4MCAR demonstrator and its initial parallelization

outcomes were presented at Dortmund International Research Conference 2017.

The author, with the supervision of his mentor, has been accepted to receive a Google

grant with the project called A4MCAR: A Distributed and Parallel Demonstrator for Eclipse

APP4MC [8] from Google Inc. and The Eclipse Foundation during the Google Summer of

Code 2017 (GSoC’17) event. During the event, outcomes of the project as well as the code

that is created has been contributed to The Eclipse Foundation in an open-source manner

under Eclipse Public License 1.0 (EPLv1). Thus, the intention of helping Real-time and

parallel software development community was supported crucially during the participation

on GSoC’17.
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2. Background Information on Concurrent

Programming and APP4MC

2.1. Introduction to Parallelism

High performance systems, scientific computations and multi-feature systems require well-

established parallel software. The physical problems in our world are being solved by em-

bedded systems especially by making use of simulations which are becoming more and

more complex as the years go by. Graphical applications which involve big data operations

also make use of the benefits of the parallel software. As the data that is involved in such

systems increase, required amount of computing power, memory space and the need for

accuracy and speed also increases. In the last decades, the improvements in high perfor-

mance computing and the advancements in processors are significantly developed which

allows the development of efficient parallel software in systems. Today, computers with mul-

ticore processors allow every desktop to be eligible for parallel software development. In [9],

it is pointed out that the technological developments regarding multi-core processors and

parallel computing was forced by physical reasons. As increasing the clock speed causes

overheating which gets harder and harder to get rid of as the clock speed increases, the

developments regarding multi-core technology allowed more computations to be achieved

without having to increase the clock frequency [9].

While the hardware-related developments are out there, in order to make use of parallelism

one should modify an existing software to increase its performance on a multi-core proces-

sor. Furthermore, the execution time of the parallel program should be lesser the execution

time of the sequential program for it to worth the effort. Designing a parallel program, as

compared to a sequential program can be time consuming. In this regard, one should know

the parallel programming models and modern techniques to utilize a software in parallel

manner. With this idea, it can be said that there is much research going on in the area

of parallel programming languages and environments with the goal of utilizing parallel pro-

grams at the right level of abstraction [9].
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2. Background Information on Concurrent Programming and APP4MC

General purpose computer systems and embedded systems are both evolving with par-

allel computing. A general purpose computer system can be described to be a system

without any specific domain or specific constraint on power, performance and cost; whereas

an embedded systems are parts of larger systems and are always dedicated to dealing with

specific problems in specific fields [10]. In both of the mentioned systems, giving timely

response to events (also called real-time computing) is key in computing process [10].

Although both general purpose computer systems and embedded systems have basic com-

puting, storage, and I/O components, embedded systems are used due to their cost ef-

fectiveness in larger scale systems. Furthermore, the evolution of embedded systems has

allowed for them to make use of parallel computation features just like general purpose com-

puter systems in the last decades. Therefore, a focus on optimizing the software on embed-

ded systems are studied in this work in order to achieve application-specific, cost-effective,

performance-effective and power-effective applications.

The following sections in this chapter will give an introduction to parallelism, modern tech-

niques, and will explain the theoretical part of parallelism which is addressed in this report.

2.2. Memory Architectures

Parallelization of a program is all about efficient usage of CPU time (also called as com-

putation time) and memory accesses. Assuming some tasks are distributed through a dis-

tributed, many-core or multi-core system, the synchronization between the tasks’ accesses

to memory should be achieved. With these goals in mind, machines according to their mem-

ory architectures could be summarized as follows:

• Distributed Memory Machines (DMM): Distributed Memory Machines are the sys-

tems that use distributed memory architecture. A DMM is illustrated in the Figure

2.1. In the distributed memory architecture, the units which consist of a processor

and a memory are interconnected using a network [9]. There are several topologies

with which the nodes can be interconnected. Such topologies involve point-to-point

topology, bus topology, crossbar topology, ring topology, mesh topology and hyper-

cube topology which makes use of an external routing unit [11]. The advantage of

distributed memory is that each processing unit has individual memory units. Thus, all

local memory is private and can only be accessed via the respective local processor.

Therefore, the communication between the individual processor memories are only

handled via a message passing interface (MPI) [9]. However, DMMs often have very

large communication costs compared to other memory architectures. DMMs often re-

semble networks of workstations according to [9]. Collection of complete computers

with a dedicated interconnection network are called clusters and they also use mes-

sage passing interfaces for communication. The difference between cluster systems
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2. Background Information on Concurrent Programming and APP4MC

and distributed systems is that a job scheduler is used in clusters as opposed to being

addressed individually. Today’s popular message passing libraries to address com-

munication in cluster systems and distributed systems involve PVM and MPI libraries

[9].

• Shared Memory Machines (SMM): Shared Memory Machines are the systems that

use the shared memory architecture. Since a shared memory architecture has a

shared physical memory (global memory), the coordination of processor accesses

to global memory must be considered. A global memory can be a collection of memory

modules and the data access to the global memory is handled by reading or writing

shared variables. A shared memory architecture is illustrated in the Figure 2.1. A

typical example of a shared memory architecture can be found in multi-core proces-
sors in which there exist many physical processing units called cores, and shared

memory modules. In computers, parallel programs for SMMs are often handled by us-

ing threads which are control flows that share data with other threads by accessing a

global address space. While kernel threads are managed by the operating system
(OS) and mapped to the system cores by the OS, the user threads are often mapped

to cores by using specific programming environments. Today’s user threads within a

computer system often use frameworks and libraries such as OpenMP and POSIX

thread (Pthread) for C language, Java Threads, and Python’s threading library [9].

While using shared memory architecture is advantageous in terms of costliness, the

design of shared variables and mutual exclusion of shared variables might be effort-

ful and time consuming. The coordination problems of shared address space may

lead to error-prone non-deterministic systems which will have the issues such as race
conditions which will be described in the coming sections.

Distributed Shared Memory (DSM) architecture is often used in systems as well. A de-

piction of such architecture is given in the Figure 2.1. In distributed shared memory ar-

chitecture, the shared memory model is implemented in a distributed fashion. The shared

memory model allows all nodes to have a virtual memory space. Since distributed systems

have high communication costs, by moving data to the location of access DSM systems

reduce the high communication cost [12].

2.3. Introduction to Multi-core Processors

The processor chip industry progressively evolves since its existence. However, accord-

ing to [9], the fashion of increasing the chip performance has changed due to the physical

limitations. As an example, pipelined parallelism of instruction execution is limited by the
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Figure 2.1.: Memory Architectures [13]

clock speed. The parallel programming book by Thomas Rauber et al. [9] explains these

limitations as follows:

• Clock speed of a processor can no longer be increased significantly. Since the in-

crease of the number of transistors on a chip is achieved by increasing the transistor

density and this results in excessive heating due to current leakage, expensive cool-

ing equipment are required. Furthermore, the heating on a chip should not exceed a

certain limit to keep the chip functioning properly.

• Memory access times can not be reduced to the same rate as the processor clock

increase. That results in a bottleneck when the processor is accessing the memory.

Cache memories, which are temporary memories that are used in order to reduce the

memory access times, are utilized in order to overcome this issue but further perfor-

mance increase in processing units may not be resolved with caches.

• The speed of signal transfers within the wires could be a limiting factor.

• The physical size of a chip limits the number of pins that are used, which can limit the

bandwidth between CPU and memory, which also creates a bottleneck at the memory

communication.

Due to the aforementioned limitations, rather than increasing the performance, multi-core

processors have been developed which consist of several physical execution cores. Due

to the physical cores, total parallelism as opposed to single-core threading is achieved by

using multi-core processors. Cores of a multi-core processor consist of seperate execution

resources such as functional units (Arithmetic Logic Unit (ALU), multiplier) and execution

pipelines [9]. A multi-core processor or a microcontroller also fits in a single chip package

same as a single-core processor. Proper software application examples in a multi-core

computer system involve background applications and scientific cpu-intensive computations

that distribute a task into several cores to improve their performance.

Within a multi-core processor, usage of threads should also be understood. It is known that

the single-core processor threading can be used to achieve parallel software with higher
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performance. The threading is also possible in multi-core processors which will achieve

even higher performance and will allow more features to be parallelized. The graphical

illustration of this is given with the Figure 2.2. Using the physical core for only one thread or

a process is related to mapping, whereas the timing organization of many threads in one

core is handled by scheduling which is done by the operating system. These terms will be

further explained in the coming sections, primarily at the Section 2.4.

Figure 2.2.: Illustration of time-sliced execution paths in a multi-core processor [14]

2.4. Essential Concepts in Parallelization

Basic concepts in parallel programming should be understood to develop efficiently utilized

software. The design of a parallel software starts by decomposing an application into its

smallest pieces which are called runnables. This practice is especially used in the automo-

tive domain. Using general terminology, One or more runnables combined constitute tasks
which are functional pieces of an application that can be executed parallel across a multi-

core or single-core processor. The size of tasks (mostly in terms of number of instructions)

are called granularity [9]. Therefore, when decomposing an application into smaller pieces,

granularity of the tasks should be considered for the load balancing. The tasks of an appli-

cation are assigned to processes or threads for parallel execution on the hardware platform.

Therefore, processes can be defined as programs that are assigned to execution resources

to execute instructions concurrently. The switching between processes are called context
switches, and the scheduler of the operating system manages those switches. A thread
can be defined a continuous sequence of execution. A process can involve one or many

independent control flows, i.e. threads [9].
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Scheduling is the process of determining the order of execution of processes or threads on

physical hardware whereas mapping is defined as the assignment of processes or threads

to processing units. In other words, processes or threads are placed on cores using map-

ping, whereas their execution sequence is determined programmatically with the help of

scheduling. The use of these techniques for parallel design introduce some challenges.

Besides assigning processes or threads to cores, one should also manage assigning data

to memories and communication to data paths. Constraints such as instruction set, locality,

grouping, sizes, and deadline of the tasks can make this process effortly and time consuming

[13]. Synchronization is also an important job which defines the organized communication

between processes or threads [9]. Since the memory organization of the hardware matters,

design should consider the hardware along with the software. The coordination and syn-

chronization of processes and threads will be discussed in the next section, namely Section

2.6.

Finding a useful scheduling and mapping strategy is key to good parallel design. The prac-

tices involve keeping the parallel execution time of a task lower than the sequential ex-
ecution time, keeping the load balanced through the cores of the system and keeping the

communication overhead low. According to the book [9], for the quantitative evaluation of

parallel programs, measures such as speedup and efficiency can be used which are mea-

sures that compare parallel execution time of a software with its sequential execution time.

2.5. Design Techniques in Parallelization

Parallelization can be defined as the transformation of a sequential program into a parallel

program [9]. Although different sources ([9] and [13]) generalize the design techniques in

parallelization differently, one can go through the following challenges in order to develop

parallel software through parallelization (also illustrated with the Figure 2.3):

• Partitioning of the problem: The application that addresses a problem should be

decomposed into smaller pieces, i.e. runnables that are considered to be the small-

est pieces in a software. In some cases, this decomposition can be at task-level.

A runnable or a small task can be a function that involves a single or more read or

write accesses to a register or a shared variable, peripheral communication, or simple

computations. In theory, a runnable is only executed in a single core and it has no

dependencies to another runnables. However, the more complex tasks involve many

runnables and introduce interdependency between them. The goal of this decomposi-

tion (according to [9]) is to make sure that all the applications are fine-grained enough

that load balancing can be achieved. In other words, runnables should have small

granularity and with the help of this the generated tasks can be distributed more effi-

ciently.
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Figure 2.3.: Illustration of design techniques in parallelization [13]

• Analysis of the communication: Communication between runnables and tasks should

be considered before the task generation. Communication is a big constraint in a par-

allel software, therefore all the dependencies between runnables or tasks, in terms

of which runnable reads or writes data, and what is the communication cost (granu-

larity) should be analyzed. Furthermore, it needs to be made sure that the inter-task

communication produces low overheads as possible.

• Agglomeration of executables to tasks (Task Generation): In the task generation

phase, runnables and some tasks are grouped together in order to constitute tasks.

This is done with the consideration of dependent runnables in terms of communication.

Also, the grouping should consider functional unification as well as load balancing.

• Assignment of tasks to processes or threads: According to [9], this intermediate

phase is involved in computer systems where processes and threads are involved. The

tasks that are generated can be grouped in order to constitute processes or threads.

This step makes the software mapping-ready. In the cases of some multi-core micro-

controllers, such as the design that is presentated in this work using APP4MC, the

mapping is done at the task-level. Therefore, this intermediate step is not required.

• Mapping of processes or threads to physical processes or cores: Each process,

thread, or task in some cases are assigned to a seperate processor or core after the

final agglomeration phase, i.e. when the runnables are grouped sensibly. In cases

where there are more process or thread than a core, multiple threads are assigned

to some cores. In this case, as mentioned scheduler of the operating system takes

care of the execution order of multiple processes or threads on a core. The mapping

phase in computer systems is usually done by the operating system but the users can
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intervene. Usually, the main goal of the mapping step is to get an equal utilization

while keeping the communication overhead smallest [9] [13]. However, one can set-up

different optimization goals such as reducing the power consumption for the mapping

stage.

2.6. Coordination and Mutual Exclusion

A critical section can be defined as a shared variable that is accessed by two or more

processes or threads. When developing parallel programs, not managing critical sections

correctly might lead to error-prone systems. The actions of the processes or threads, when

accessing a critical section, should be co-ordinated. For that purpose, mutual exclusion
(also called mutex) concept must be investigated which refers to the requirement of ensuring

that no two concurrent processes are in their critical section at the same time [13]. Generally,

mutual exclusion is handled by using mutex algorithms such as Lamport’s Bakery Algorithm

[13], ensuring that every process is live, safe (no non-deterministic behavior is involved) and

granted a fair amount of CPU time.

There are many problems that can occur in case the coordination of the process communi-

cation via accessing critical sections is not handled properly. A problem that is called race
condition can occur in case mutual exclusion is not properly provided. Race conditions can

be defined as the behavior of a system where the system behavior depends on the order or

timing of the uncontrollable (sporadic) events [13]. In other words, race conditions happens

when the system behaves non-deterministically due to the non-fixed order of accesses to

critical region. Another problem that might arise is the deadlock problem which is the issue

of processes not releasing the shared variables and waiting to acquire other shared variables

that are being used by other processes [13]. In a deadlock scenerio, neither process can

continue working therefore the execution does not progress. In a livelock situation, how-

ever, two or more processes access a shared variable but does inverting actions, thus even

though the processes are alive the execution does not progress and has a non-deterministic

behavior. The spinlock, a mechanism in which a task is continuously waiting for a shared

variable to be released, can be given as another example of the problems that might occur

if the mutual exclusion is not properly implemented.

Today, many thread and concurrent programming libraries involve functions to use mutual

exclusion. A simple way to access a shared variable in a programming language could

be to define a mutex variable and lock it before writing to this critical section. After the

process writes to the critical section, one must release the section by unlocking the mu-

tex variable. However, it must be remembered that while handling complex critical sections

where many processes are involved, coordination of process access’ to the critical section
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should be provided by using mutual exclusion algorithms such as Lamport’s Bakery Algo-

rithm. Semaphores (which are data types that control the access of multiple processes to

a shared resource), monitors (which provides buffered locking mechanism to concurrent

accesses), and synchronization methods (such as message passing) can also be used in

order to coordinate the actions of multiple processes to critical sections [13][9].

2.7. Analysis of Scheduling

For the purpose of analysis and evaluation, one can use system traces that involve informa-

tion such as timing, mapping, and priority in order to see if the tasks, processes or threads

behave as expected. To meet the optimization goals, this work involves the evaluation of

several software distributions.

According to [13], scheduling quality of service (QoS) could involve the following goals:

• Even load-balancing

• Efficient resource usage

• Maximal throughput (completed processes per time unit) and utilization (percentage a

processor is used)

• Minimal response time and latency

• Maximal fairness (every process receive fair amount of cpu time depending on their

granularity)

• Avoiding starvation (every process is guaranteed to receive cpu time eventually)

In the following section (Section 2.8), the optimization goals for parallel software are dis-

cussed. It can be argued that an important portion of the optimization goals for a parallel

software can be achieved through the scheduling goals.

To understand how tasks are scheduled, one must carefully study the task graph given in

the Figure 2.4. In the figure, it is seen that two tasks A and B are given with task B having a

higher priority but lesser execution time than task A. Timing properties of the given timeline

are defined as follows [15] [13]:

• Initial Pending Time (IPT): IPT is defined as the preparation time before a task is

ready to be started execution.

• Core Execution Time (CET): CET is the absolute time elapsed at which the task is

executed on the processor. Therefore, the amount of time the task is preempted are

not counted when calculating the CET. In the figure, it is seen that Task A is preempted

once, thus the overall CET is found by adding the times CET1 and CET2.
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Figure 2.4.: Timing properties for scheduling in multi-tasked systems [15]

• Gross Execution Time (GET): The GET is the amount of time it passes for an iteration

of a task or an event is executed. In other words, it is the elapsed time the execution is

done until the task goes into the sleeping state.

• Response Time (RT): The response time is calculated by adding IPT and GET, i.e.

RT = IPT +GET .

• Deadline (DL): The deadline of a task or an event is the amount of time a task has

to be completed in order to meet the real-time requirements of the task. Therefore, a

reliable task must not miss its deadline even in the worst case. The deadline misses

(DLM) can be used as an evaluation measure for the reliability of a task. It can also be

used as a measure to compare the quality of software distributions as seen in Section

5.

• Delta Time (DT): The delta time of a task can be defined as the time between two

gross executions of a task.

• Slack Time (ST): The slack time is the amount of time a task is at a sleeping state. In

other words, slack time is the time between the last response of a task and the start of

the pending state (IPT). Slack time describes the flexibility of a task, thus it is the time

that a CPU can be used for other tasks. Therefore, if the slack time is higher in a task,
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that task is considered to be less stressed. Slack time is also a measure that is used

in the evaluation of different software distributions.

• Period (PER): The period is one of the most basic properties of a task which defines

how long it takes before a task repeats its instructions. The period is defined for tasks

that are periodic.

Although the given timeline depicts the overall timing properties of task scheduling, due to

tracing and instrumentation limitations not all of the information is extractable from the sys-

tem trace. IPT, for example is a timing property which is not present in the tracer that is used

in the work that this thesis explains. Therefore, IPT is neglected due to the aforementioned

limitations and the fact that it is bound to be a rather small amount of time. Scheduling anal-

ysis is implemented in this work in Section 3.3.2. Furthermore, how information of what kind

of evaluation metrics are used are further explained in Section 2.8.

2.8. Optimization and Evaluation of Parallel Software

Not every parallel program is beneficial. In order for a parallel program to be useful, it should

be optimized. There are four main reasons for a parallel software to be optimized. Each op-

timization process focus on a goal and the design and development of the software should

be carried out by considering that goal. The optimization goals (depicted in the Figure 2.5)

involve achieving lowest energy consumption, achieving lowest computation time, achiev-

ing highest resource utilization, and achieving highest reliability. The way these goals are

achieved are also shown in the Figure 2.5. It should be added that maximizing or minimizing

any software property in a positive way can be generally seen as an optimization problem

that deals with e.g. safety, security, distributivity, or scalability demands among others [7].

However, the figure given shows the basic software optimization goals that are related to

this work.

Figure 2.5.: Optimization goals of parallel software [13]
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On a higher level, there is always a question whether the optimized software is really op-

timal or not. There are strategies with which this could be measured and true optimiza-

tion could be achieved [13]. Those strategies involve Linear Programming, Integer Linear

Programming, Genetic Algorithms, Mixed Integer Linear Programming, Quadratic Program-

ming, Evolutionary Algorithm, and Simulated Annealing [13]. Although it is useful to know

such strategies exist, the optimization of an parallel software on a higher abstraction layer

will not be a part of this work.

As mentioned before, one of the most basic evaluation techniques to determine if a paral-

lelized software is beneficial as opposed to a sequential software is to check the run-times of

the processes. If the parallel run-time (overall execution time) of a program is less than the

sequential run-time, then it could be said that parallelization benefits in terms of computation

time. The following list involved the parallelization evaluation techniques that will be a part

of this work in evaluating software distributions.

• ST avg: Average slack time of all traceable processes

• DLM : Percentage of deadlines missed

• U0-p: Percentage of utilization of each core

• Sp(n): Speedup value which quantitatively compares the execution time of a sequen-

tial implementation with that of the parallel implementation [9]. Speedup is calculated

as follows [9], given that T *(n) is the sequential run-time and T p(n) is the parallel

run-time:

Sp(n) =
T *(n)

T p(n)
(2.1)

It can be said that the bigger the speedup value, the better the parallel utilization.

The aforementioned evaluation techniques are mostly used to evaluate load balancing (U0-p),

reliability (DLM ) and resource utilization (ST avg, U0-p and Sp(n)).

2.9. New Trends in Parallelization

New practical trends evolve in software development every passing day. Since today’s ap-

plications are more complex than they were before, software development field tends to

grow. Surely, with the applications getting more complex, more advanced development en-

vironments, platforms, and frameworks are needed. Software engineers have been trying

to fulfill this need especially since embedded, internet-based and cyber-physical systems

became more common. Since some systems require hard real-time requirements, real-time

development has became an important field of study.
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One of the most common concurrent programming libraries involve Real-time Operating
Systems (RTOS). Real-time operating systems are the operating systems or more practi-

cally frameworks that are developed for microcontrollers or processors. They provide real-

time computing to the viable hardware in order to be used in the applications that requires de-

terministic and predictive task behavior [16]. RTOS’ implement kernel components which are

scheduler, thread managers, message queues, semaphores, mutexes, timers, and memory

pools [16]. In the basic sense, an RTOS can be used to schedule applications, send and

receive messages, get and release semaphores, and handle events in order to manage a

parallel system [16]. RTOS’ are common for both single-core and multi-core processors.

With a single-core processor, many threads are scheduled within a single core whereas in

a multi-core processor, the mapping features can also be used. As an example, FreeRTOS

(also currently called as CMSIS-RTOS [17]) is a common RTOS library that is developed for

ARM Cortex M series microcontrollers (such as STM32F407 or STM32F103C8T6). Other

examples involve OSEK/VDX, RTX, FreeOSEK etc.

As introduced, multi-processor and multi-core solutions are also common. For distributed

systems, MPI C/C++ library uses compiler directives to parallelize applications. Further-

more, OpenMP is a C/C++ library that is developed for systems with shared memory ar-

chitecture and it can be used as a different solution to parallelize applications and manage

message passing.

Since thread-level parallelism, i.e. using virtual cores to manage many-tasked, advanced,

featured systems, is very common since the multi-core processors became popular, almost

every programming language has its own separate libraries or frameworks to support multi-

threaded software development. A few examples could be given: Java’s Thread library,

C/C++ POSIX Thread (Pthread) library, and Python’s threading library [18]. One could also

make use of the mapping features of Linux kernel to develop parallel applications on the

process level.

The tendency of applications in the embedded computing domain also made concurrent

programming popular in single board computers such as the Pandaboard, Beagleboard,

Beaglebone, and Raspberry Pi etc. Since a single board computer can run many program-

ming languages and they provide multiple cores nowadays, one can easily use the afore-

mentioned libraries and frameworks to develop concurrent applications for them. However,

although parallelization is not an issue, some single board computers are not very beneficial

in terms of real-time computing. Therefore, since Raspberry Pi is used in A4MCAR due to

being low-cost, real-time aspects of it are also be discussed.

According to [19] and [20], a real-time application can ensure guaranteed response within

strict timing constraints. Real-time nature of an operating system is related to interrupt la-
tency, the time to process an interrupt, and scheduling latency, the time to start a process-
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ing task [20]. Although Raspberry Pi is a good embedded platform for most of applications,

its real-time capabilities are not satisfying in terms of the following [20]:

• Current Linux or BSD kernels for Raspberry Pi do not support real-time.

• Current Linux or BSD kernels for Raspberry Pi have a lot of overheads.

• Raspberry Pi does not have a real-time clock.

The solutions offered in [20] involve adding pulse generators or real-time clocks, building new

Linux kernel without unnecessary services to remove overhead, or using real-time operating

systems such as RTEMS or PREEMPT-RT that are ported to Raspberry Pi. However, the

work that is presented with this thesis doesn’t use such system because of the complexity

of applications and the need for using multiple languages and runtime environments for

applications.

Since this work targets the automotive domain, the reader would benefit from knowing what

concurrency solutions are used for automotive systems. Since an embedded system in an

automobile consists of many ECUs (Electronic Control Units) with multi-processor capa-

bilities, it is crucial to handle synchronization and communication between the distributed

and parallel nodes. A software solution that is used by the most automotive OEMs and

part suppliers is the AUTOSAR platform[21]. AUTOSAR is a framework that is used for

microcontrollers or processors which have services on many abstraction layers to deal with

memory, communication, I/O operations. A real-time runtime environment (RTE) deals with

scheduling (OSEK scheduler), events, timers and semaphores apart from the application.

The AUTOSAR architecture, therefore, intends to provide modular applications that only

communicate using hardware and software ports with other micro-controllers and other em-

bedded ECUs. The hierarchical representation of AUTOSAR architecture can be seen in

the Figure 2.6. Figure shows that there are many drivers, hardware abstraction layers and

services before application is scheduled and executed.

Figure 2.6.: AUTOSAR Architecture [21]
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2.10. Parallel Design using Eclipse APP4MC

As introduced in the Chapter 1, this work uses the Eclipse APP4MC development tool for

software parallelization. APP4MC (Application Platform Project for MultiCore) [3] [22] is

an Eclipse-based project that aims to achieve an open, consistent, expandable tool platform

for embedded software engineering [23]. APP4MC targets multi-core and many-core plat-

forms, while the main focus is the optimization of embedded multi-core systems [23]. Due

to its focus, APP4MC is partnered with many automotive OEMs and part suppliers that deal

with embedded software engineering. Furthermore, it supports interoperability and exten-

sibility and unifies data exchange in cross-organizational projects [22]. Additionaly, since

APP4MC uses Eclipse platform to its purposes, the development environment has a com-

plete open-source nature under Eclipse Public License 1.0 (EPLv1) [24].

The Eclipse APP4MC platform editor window can be seen in the Figure 2.7 [23]. In the figure,

the Explorer window is used for finding models, performing operations such as partitioning,

task generation, mapping, and model migration. The tree editor shows the hierarchical

structure of the selected AMALTHEA model, whereas the Element Properties window is

used for editing the properties of AMALTHEA model elements selected in the Tree Editor

[23].

APP4MC is a project founded by a publicly founded project AMALTHEA4public [4]. APP4MC

uses AMALTHEA models, which are XML-based EMF models that describe software com-

ponents and hardware platforms. The main operation of APP4MC involves modeling the

system by creating AMALTHEA models and performing partitioning, mapping, optimization

on parallel programs [3]. APP4MC also has the ability to trace and simulate parallel pro-

grams. Basic ingredients for an AMALTHEA model are illustrated in the Figure 2.8 [22]. It is

seen that AMALTHEA model can contain software decisions, costs, constraints, as well as

hardware platform information [22]. Constraint models are used to define process groups

to make sure some processes belong together. Furthermore, a target platform dependency

of a process group is also modeled using constraints model. More information on modeling

will be discussed later in this section.

An illustration of how parallel software can be designed for embedded multi-core platforms

are given in Figure 2.9. Studying the illustration given in Figure 2.9 in combination with the

parallel design techniques that were given in the Section 2.5, the following remarks can be

made regarding the design procedure with APP4MC platform:

• Modeling: Design of a parallel software starts with modeling in APP4MC. An AMALTHEA

model is constructed that involves three seperate models: (1)- hardware model, (2)-

software model, (3)-constraints model. In the hardware model, each distributed ECU

is modeled in a hierarchical manner. The hardware model involves information such
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Figure 2.7.: Eclipse APP4MC platform Editor Window [23]

Figure 2.8.: AMALTHEA Model for APP4MC [22]

as number of processor cores, system clock frequency for processors, and memory

details. In the software model, runnables are modeled among others. Runnables are
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found with the help of binary analysis tools and by using the decomposition technique

mentioned in the Section 2.5. Each runnable is modeled by making use of information

such as granularity (number of instructions) and label accesses (memory read-write).

In the early development stages, the model contains a rough model of the software,

but the model is constantly improved by using either the Tracing functionality of the

APP4MC or other tracing software.

• Partitioning: The partitioning stage in APP4MC-aided parallel design corresponds

to identification of initial tasks. After an initial AMALTHEA model is constructed, one

can perform partitioning in APP4MC by simply selecting the model and pressing the

Perform Partitioning button. At this stage, APP4MC will analyze the runnables and

runnable label accesses in order to suggest how tasks should look like for a balanced

parallel distribution. APP4MC currently uses two partitioning algorithms that are ESSP

(Earliest Start Schedule Partitioning) (performed by default) and CPP (Critical Path

Partitioning) in order to find the partitions of the system. ESSP and CPP algorithms

are based on the graph theoretical analyses [25] which are commonly used in hard-

ware and software co-design. Partitioning algorithms are used for analyses of the

granularity and communication costs of individual runnables and create best possible

parallel partitions.

• Task Generation: Initial tasks (partitions) are finalized by pressing Generate Tasks

button. By making use of the dependencies between partitions and by grouping them,

APP4MC generates a model that contains the desired amount of tasks with the help

of Task Generation phase.

• Mapping: As known, mapping is the stage of placing the software distributions (tasks,

processes, threads) into the processors. By making use of the hardware capabilities

and using optimization strategies (such as Integer Linear Programming or Genetic

Algorithms), APP4MC is able to find a mapping model of the system. The utilization

details of the simulations will be seen at the end of the mapping stage.

• Code Generation: Since APP4MC provides model-based development, code gener-

ation features for C language could be written for proprietary platforms.

• Tracing: By making use of binary tracing, AMALTHEA trace model can be observed

and re-used to update the system model.

APP4MC promises beneficial set of tools for embedded parallel software development. How-

ever, the demonstration of its features is needed for further improvement. Therefore, in this

work APP4MC is used for system parallelization for the A4MCAR, a demonstrator RC-Car.

Further sections will involve design, modeling, and evaluation of software distributions for

this demonstrator.
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Figure 2.9.: Illustration of how parallel software are designed using APP4MC platform [4]

2.11. Related Work

There are many studies done in the direction of efficient software parallelization method-

ology and tooling such as [26], [27], [28], [7], [29], [30], [31], [32], [33], and [34]. The

researches that involve APP4MC-based and AMALTHEA model-based parallelization are

e.g. [26], [27], [28], [7], whereas some useful publications in the same direction that doesn’t

involve APP4MC or AMALTHEA can be given as [29], [30], [31], [32], [33], and [34].

The work by Carsten Wolff et al. [26] introduces the evolution of the AMALTHEA tool project

between 2011 and 2013. Many aspects such as standardization, tool-chain support and

evolution, software development methodology in the tool-chain are explained. The paper

also introduces Eclipse-based open source framework development. Due to AMALTHEA’s

close relevance to APP4MC, it is crucial to understand how AMALTHEA is tailored and how

it became an open-source embedded multi-core development platform.

While the aforementioned paper explains the standardization and tool-chain aspects, the

paper by Robert Höttger et al. [27] describes the model-based partitioning and mapping

features of AMALTHEA (and by extension APP4MC) with the emphasis of automotive do-

main. In the paper, novel approaches to partitioning and mapping in terms of model-based

embedded multi-core system engineering are introduced. This work shows that the perfor-

mance, energy efficiency and timing requirements are improved using their partitioning and
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mapping methodologies. The work compares approaches such as Critical Path Partitioning

and Earliest Start Scheduling Partitioning regarding partitioning and GA- (Genetic Algorithm)

based optimization approaches towards mapping. How specific goals such as energy con-

sumption and load balancing are addressed are also included in this paper. The paper also

discussed benefits, industrial relevance and features of the presented model-based multi-

core partitioning and mapping techniques in common with existing approaches.

The publication by Andreas Sailer et al. [28] gives an extended practical comparison of

distributed multi-core development standards in the automotive domain. The XML-based

automotive software standards ASAM MDX, AUTOSAR and AMALTHEA are compared with

regard to their model, methodology, and reference implementation. It is mentioned that out

of three standards only AMALTHEA is open-source and has special focus on multi-core

development. It is also mentioned that AMALTHEA exchange format allows the detailed

specification of dynamic software architecture properties. Regarding the overall compar-

ison results using a case study, although it is stated that AUTOSAR is much more than

just a standard to automotive software development and is capable of many things, the pa-

per concludes that AMALTHEA is able to address some of the deficits of AUTOSAR within

the scope of multi-core. Also, the AUTOSAR compatibility of AMALTHEA within the project

AMALTHEA4public as a relatively new but open-source supplementary tool to the automo-

tive world is highlighted in the paper [28].

One work that the author of this thesis is also involved [7] addresses constrained mixed-

critical parallelization for distributed heterogeneous systems using APP4MC. This work ex-

plains addressing software parallelization via precise modeling and affinity constrained distri-

bution. In the research, the precise modeling, partitioning and mapping features of APP4MC

are used in order to achieve software parallelization on the demonstrator A4MCAR. Exper-

iments along A4MCAR show that using new distributions from APP4MC creates significant

improvement regarding proper parallelization and energy efficiency compared to the se-

quential distributions or distributions that are created by the operating system, which are the

experimental conformance to the results discussed in the work [27]. In the work, it is also

addressed that due to less context switching compared to OS-based distributions, affinity

constrained distribution using the results from APP4MC could help to achieve a software that

consumes less energy on the hardware system. The work states that by underclocking the

CPU without creating and deadline misses could also decrease the energy consumption sig-

nificantly. Besides the aforementioned aspects, the paper [7] also addresses the APP4MC’s

model-based technique and capabilities regarding partitioning and mapping along with tools

and methods on Linux platform to gather information to create precise software models.

Safety considerations such as ASIL-level based partitioning and mapping is explained in the

work which shows the APP4MC’s relevance to the automotive domain [7].

As mentioned in the first paragraph of this section, there is several other work that targets the
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same direction as AMALTHEA or APP4MC. As an initial example, Devika et al. [29] explains

the implementation of an AUTOSAR Multicore Operating System. In their work, Devika et al.

talk about real-time operating system OSEK/VDX, standards set by the AUTOSAR standard,

and the implemented multi-core features of AUTOSAR. Also the challenges such as spin-

locks, deadlocks, starvation, fairness are investigated. In order to understand how such

challenges are tackled in industry, the work done by Devika et al. is surely a good starting

point. Another example of good reading materials could be given as the contributions done

by Navet et al. [30] and Alfranseder et al. [31]. In their paper, Navet et al. talk about safety

critical aspect of multi-core automotive ECUs, i.e. operating system protection mechanisms.

Strategies toward scheduling and load-balancing are also explained in their work. The work

by Alfranseder et al. [31] however try to find solutions to two crucial questions. In their words,

those questions are "How can one schedule real-time tasks to the available cores in an

optimal way?" and "How can one handle synchronization of shared resources with minimal

overhead?". They present a spin-lock and busy-wait based resource sharing protocol to

answer these questions. As for more examples for work done in the direction of timing

synchronization and tracing, the works by Yu et al. [32], Lu et al. [33], and Nilakantan et al.

[34] could also be beneficial to the reader.
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(A4MCAR) Design and Implementation

3.1. System Overview

As introduced in the Chapter 1, the A4MCAR is a demonstrator RC-Car for the APP4MC

development environment. The A4MCAR provides a distributed multi-core architecture that

allows the demonstration of embedded low-level and high-level applications. Pictures of the

A4MCAR can be seen in Figure 3.1.

3.1.1. System Features

As the A4MCAR targets automotive industry and parallelization studies done via APP4MC,

it features not only sensing and actuation related features but also applications that would

help with task to core distributions and parallelization performance evaluation. The featured

applications for the A4MCAR are illustrated in Figure 3.2. In the figure, it is shown that the

low level module of A4MCAR, built using xCore-200 eXplorerKIT targets mostly actuation

and sensing related applications. The full list of tasks developed for the low-level module

includes:

• Core monitoring applications for each tile (two exist) that calculates the average core

utilization.

• Bluetooth task to configure the bluetooth module in slave mode and receive data over

UART interface.

• Proximity measurement task that obtaines the distance sensor information from four

SR-04 sensors over an I2C sensor network.

• Speed control task in order to use PWM to control the speed controlling motor.

• Steering task that controls a servo motor using PWM signaling in order to steer the

A4MCAR using external inputs.
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Figure 3.1.: A4MCAR

• Light system task in order to control a light module for certain conditions.

• Ethernet server task to maintain a TCP server for data reception and transmission from

the high level module.

• TCP task and several other ethernet configuration related tasks to configure the ether-

net module (PHY) drivers and establish proper TCP connection.

In order to investigate parallelization outcomes on a GNU/Linux platform and make use of

high level features such as web server, image processing and touchscreen interface high-

level module is introduced to the system. The high-level module is designed so that it can
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Figure 3.2.: Applications developed and/or maintained for A4MCAR

communicate with the low-level module over TCP in order to send driving information and

retrieve core information from the low-level module. It is important to mention that high-level

module uses Raspberry Pi 3 in order to achieve high level tasks using a robust Debian-

based OS, namely Raspbian. Although the features of the high-level module is illustrated in

the Figure 3.2, a full feature list can be given as follows:

• Core monitoring application that calculates the average core utilization on each core.

• Image processing application that helps to find a traffic cone.

• Apache Web Server that is used to host a web page which shows average core usage,

show Raspberry Pi 3 camera (Raspicam) stream and helps to drive the A4MCAR via

web page controls.

• Ethernet client application that handles data transmission and reception to and from

server using file operations and data parsing.

• Camera and streaming application that starts the Raspicam and maintains the stream

using configuration parameters such as resolution, quality, frame rate, port and etc.

• A webpage which is used for driving the A4MCAR as well as display core utilization on

each core and Raspicam stream.

• A touchscreen display application which is used for displaying all cores and their uti-

lization, starting and killing all applications on the high-level module, allocation of pro-

cesses for the high-level module to cores dynamically, visualization of timing related
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performance indicators such as average slack time and deadline misses percentage,

selecting different distributions, and configuration of the IP addresses on the high-level

module.

• Dummy load processes and a dummy software graph that perform random matrix

multiplication in order to investigate performance indicators in full utilization.

• Several Linux processes that run the Linux OS kernel and a VNC server process that

provides PC connection via SSH connection.

3.1.2. Infrastructure

The processing infrastructure of the A4MCAR is divided into two modules: Low-level mod-

ule and high-level module. The low-level module uses a multi-core development kit XMOS

xCore-200 eXplorerKIT, whereas high-level module uses a Raspberry Pi 3 which are both

shown in Figure 3.3.

Figure 3.3.: Development boards used in A4MCAR

3.1.2.1. Low-level Infrastructure

The XMOS xCore-200 eXplorerKIT features XEF216-512, a powerful multi-core microcon-

troller that provides sixteen 32-bit logical cores that are divided into tiles [5], which are iden-

tical units that contain a processing unit, cache memory and a switch mechanism [35]. The

XMOS xCore-200 eXplorerKIT contains two tiles with eight logical cores in each tile. It is im-

portant to add that logical cores of the eXplorerKIT provides 2000 MIPS (Million Instructions
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per Second) and 512 KB SRAM along with up to 500 MHz clock speed. The specified perfor-

mance values are considered to be relatively powerful compared to regular microcontrollers.

While the processing power and cache memory of its two tiles are identical, ports on each

tile have access to different peripherals located on the board. With 53 high-performance

GPIOs, the XMOS xCore-200 eXplorerKIT features a 100/1000Mbps Ethernet module, a

high speed USB interface, a 3D accelerometer, a 3-axis gyroscope, and six servo interfaces

which make the kit useful in a wide variety of applications that include robotics, automotive,

signal processing and communication applications [5].

As the name of the development kit suggests, XEF216-512 uses the XMOS’ xCore-200

architecture. An illustration of the xCore-200 architecture is given in Figure 3.4.

Figure 3.4.: Illustration of XMOS’ xCore-200 Architecture [36]

In the xCORE-200 architecture, each core uses the memory of the tile it belongs to and

logical cores communicate using a high-speed network. Thus, channels which achieve task

communication are linked to other cores via the xCONNECT Switch. While this is the case

for tasks that are distributed to seperate cores, for tasks that are placed in the same core,

the xTIME Scheduler automatically schedules tasks by synchronizing events. The xTIME

Scheduler works similar to the RTOS schedulers in traditional microcontrollers and uses the

Round-robin scheduling method [37] [38] which is a simple and starvation-free scheduling

technique that gives each task equal time slices and disregards priorities in order to schedule

processes or tasks. Round-robin scheduling is widely used in operating systems [38].

In the xCORE architecture, the synchronization of task communication is handled by events

rather than ISRs (Interrupt Service Routines) compared to a traditional microcontroller. Each

xCORE tile is connected to hardware ports and thereby pins which can be driven high and

low in order to drive electrical peripherals. xCORE tiles are also connected to an OTP (One

Time Programmable Memory) and a SRAM (Static Random Access Memory). While OTP
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is used for code locking features, SRAM serves as a memory where the instructions and

variables are located [37].

Since the xCORE features multiple cores unlike a traditional microcontroller, it should be

clearly understood that the task interruption is not present in xCORE. This is illustrated

delicately in the Figure 3.5 [36]. If not stated otherwise in an xCORE application, all the tasks

are placed to different logical cores. This means that all the tasks are executed completely

parallel in hardware. When the tasks are shared in a core, then the multi-tasking features of

the XMOS are invoked and parallelized just like in an RTOS from traditional microcontrollers

[36].

Figure 3.5.: XMOS vs Traditional Microcontroller [36]

Most of the traditional microcontrollers including xCORE microcontrollers nowadays feature

pipelining mechanism. The instruction pipeline is a set of data processing elements con-

nected in series, where the output of one element is the input of the next one [39]. Via

instruction pipelining, processors make use of the stages in order to use the clock to its full

performance in order to reduce the time taken to execute instructions. This mechanism is

also present in most of the XMOS processors with five stages. How instruction pipelining

mechanism achieves faster instruction execution is illustrated in the Figure 3.6 [36].

Traditionally, XMOS based microcontrollers are programmed via the xTimeComposer, which

is an Eclipse-based software development platform for XMOS based multi-core microcon-

trollers with integrated features such as simulation, symbolic debugging, tracing, runtime

instrumentation, and timing analysis with a static code timing analyzer called XTA[36]. As

A4MCAR needs to make use of timing and performance values, some tracing tools and XTA

has been used during this thesis’ development. The xTIMEComposer development environ-

ment windows are shown and illustrated in Figure 3.7.

In the Figure 3.7 it is shown that the main development environment consists of the following

windows:

• Project Tree: This window is used for managing projects and source, include, binary

and configuration files within projects.
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Figure 3.6.: Pipelining Explained on XMOS [36]

Figure 3.7.: xTIMEComposer 14.2.3 Development Environment Windows
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• Coding Window: Coding window is used for writing code and placing breakpoints.

One can switch between several files by clicking on the tabs located on the top of this

window.

• Console: The console is used for viewing the building process, verbose and debug-

ging information.

• Problems: The problems window is used for seeing warnings and errors that result

from the code.

• Task Viewer: The task viewer is a special feature that is unique in xTIMEComposer

and used to visualize tasks and at which core and tile they are located. The channel

and interface connections between tasks are also visualized using this window.

• Tools Panel: This window is used in order to switch between several tools that xTIME-

Composer provide. Analyze and Debug tools are widely used in development. Analyze

tool opens xTIMEComposer Timing Analyzer (XTA) tool whereas Debug tool is used

for traditional debugging using breakpoints.

• Outline: The outline window lays out the main elements of a file such as its includes,

tasks, objects and so on.

• Libraries: The Libraries window can be used in order to search offline and online

libraries.

Programming languages which are used for xCORE processors can be listed as C, C++ and

xC (C with multicore extensions) [37]. The aforementioned xC language features three main

keywords in order to represent task communication. To represent an interface that sends

data to another task, the client keyword is used whereas if a task is retrieving data from one

or many client ports, the receiving interface is named server. It is important to mention that

server interface receives data by throwing events. Additionally, xC also allows to define func-

tion attributes which are combinable and distributable. The XMOS Programming Guide

[40] suggests that combinable tasks are the ones that continuously react to events and they

can be combined to have several tasks running on the same logical core. It is added in the

XMOS Programming Guide [40] that distributable tasks are not dedicated to only one logical

core but they run when required by the tasks connected to them. Furthermore, xC features

timers, events, guards, event priority ordering in order to help to develop event-based

software. These features of xC make multi-core programming easy and robust on xCORE

processors.
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3.1.2.2. High-level Infrastructure

The high-level processing unit of the A4MCAR is the Raspberry Pi 3 which is a widely used

single board computer in uncritical (that does not require strict deadlines) embedded ap-

plications. It has a 1.2GHz 64-bit quad-core processor with an ARMv8 architecture, 1GB

of RAM, VideoCore IV 3D graphics core and several interfaces such as 40 GPIO pins, 4

USB ports, a HDMI port, ethernet port, an audio jack, a camera interface (CSI), a display

interface (DSI), and a micro SD card slot [6]. The reason Raspberry Pi 3 is preferred in em-

bedded systems applications is that it provides excellent connectivity via 802.11n Wireless

LAN module, Bluetooth 4.1 module, and Bluetooth Low Energy (BLE) module. Additionally,

Raspberry Pi 3 is low-cost which makes it perfect for uncritical embedded applications.

The Raspberry Pi 3 can be booted with the modern Linux-based operating system distribu-

tions such as Debian-based Raspbian OS [41] and Ubuntu-based Ubuntu MATE[42] among

many others[6]. It should be noted that for the A4MCAR, the Raspbian OS has been used

due to its wide software repository and driver support. The fact that the Raspberry Pi 3

functions as a Linux computer helps in developing high-level applications that require the

presence of an operating system. The open-source nature of Linux and its software ecosys-

tem provides flexible and traceable software development. For the A4MCAR, the traceability

and flexibility features of Raspberry Pi 3 are highly used. Furthermore, a wide variety of

programming languages such as C, C++, Java, LISP, Python, Bash, Perl etc. are supported

at the Raspberry Pi. In A4MCAR, programming languages such as C, C++, Python, Bash,

HTML, JavaScript has been used in order to develop the high-level module.

Linux uses a Round-robin based scheduler called Completely Fair Scheduler (CFS). The

goal of CFS is to maximize the overall CPU utilization while also maximizing interactive

performance and being fair to all the processes and threads [43]. In order to ensure this

fairness, a tree structure of process execution times are created and sorted. Every time,

the process which is executed the least time is picked from the tree and executed until

preemption (interrupted by another software unit) [43].

A brief explanation of the architecture of Linux-based computers and as an extension the

architecture of the Raspberry Pi 3 should be given in order to develop applications and

understand how applications running on Linux work. With that idea in mind, the high-level

overview of the structure of the Linux kernel and high-level layers in a Linux system are

given in Figure 3.8 [44].

According to Mauerer [44], the kernel is the intermediary level between the hardware and

the software that addresses the devices and the components of the system (such as CPU,

memory and I/O devices) by passing application requests. While kernel processes requests

from user applications, it makes its own decision where data is located and which commands

to send to hardware. The kernel is also the instance in a Linux system which shares available
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Figure 3.8.: High-level Linux system architecture [44]

resources such as CPU, memory, and network which is why it should be addressed while

working with parallel applications.

In Figure 3.8, it is shown that kernel space is not only responsible for accessing device

drivers, but it is also responsible for memory and process management. A program under

Unix systems (such as Linux) that runs and have own virtual memory is referred to as pro-
cesses and they are scheduled by Linux kernel. The multi-tasking of processes is handled

by a mechanism that is called task-switching or context-switching which ensures that

CPU performs according to the scheduled tasks. The concept of scheduling in a Linux sys-

tem is also handled by the kernel and it is the procedure of deciding how CPU time should

be shared between existing processes. Additionally, threads in a Linux-based computer

system are also play a big role for multi-tasking which are also handled by kernel. Threads

share the same data and resources but they have different execution paths throughout the

program [44].

At the A4MCAR high-level module, it is mostly dealed with processes and investigations

according to efficiently parallelize thread and process-based system. In this regard, it is

crucial to understand the process life cycle and how kernel schedules processes. This

knowledge is described delicately by Mauerer [44] and Ward [45]. Figure in 3.9 depicts an

illustration of how the process life cycle basically works [44].

In Figure 3.9, a state machine for processes in a Linux system is given. The states of

processes can be listed as Running, Waiting, Sleeping, and Stopped. These states can be

explained using following scenerios [44]:

• If a process is being currently executed, the process is in the Running state.

• If a process is not being executed because it is waiting for CPU to finish executing

another process, it is in Waiting state.
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Figure 3.9.: Process Life Cycle in a Linux System [44]

• If a process is waiting for an external event such as a periodic activation or a sporadic

activation, it is in the Sleeping state. Notice that a transition from Sleeping state to

Running state is not possible. A process switches to Waiting state from Sleeping state

in order to wait for current process to finish its execution.

• If the user decides to kill (terminate) the application, the process goes into Stopped
state.

• If a process has been killed but its entries are still alive in the process table, the state

of that process is called Zombie. Therefore, although not shown, a transition from

Running state to Zombie state is also possible.

It is important to note that these states are traceable using Linux kernel access methods

which will be explained in Chapter 4 of this thesis along with several other Linux kernel

concepts.

The Raspberry Pi is conventionally programmed through Linux shell which is programmed

and commanded with the help of the Bash scripting language. There are several editors

and compilers introduced for Linux shell in order to help developers write, compile, debug,

and trace their applications. Most popular editors involve Nano, Vi, and Emacs which are

editors that can run without GNU Graphical User Interface. An alternative way is to use

open-source platforms such as Eclipse with correct extensions and plugins. The conven-

tional and standart C compiler for the Unix platform GCC, and the standart Python shell can

be accessed using all these compilers. For the sake of demonstration, the Linux shell which

is running Emacs is shown in the Figure 3.10. The editor shown not only allows code editing

but also allows version control and documentation frameworks interaction. It is important to

note that during the development of the A4MCAR, Nano and Emacs editors have been fre-

quently used as Nano provides easiest way to interact with Linux shell and Emacs provides

advanced features to compile and debug programs rapidly.

42



3. Distributed Multi-core Demonstrator (A4MCAR) Design and Implementation

Figure 3.10.: Linux Shell running Emacs

3.1.3. Hardware Design, Sensors and Protocols

One should care for a robust hardware design in order to avoid having software problem

and safety related issues. In A4MCAR, a number of modules have been used alongside

development kits in order to provide utility to the demonstrator. On the low-level module

side, a light system, an RN-42 Bluetooth module, four SRF-02 ultrasonic sensors, a servo

motor, a TBLE-02S electronic speed controller have been used. The high-level module side

however only is connected to a touchscreen display and a Raspicam (Raspberry Pi camera).

The overview of hardware connections, used protocols and device architectures is given in

Figure 3.11.

The system uses various communication protocols, shown in Figure 3.11 in order to interact

with sensors, actuators and utility devices. The communication protocols and associated

devices used for the A4MCAR could be listed as follows:

• PWM: In order to interact with the servo motor, the TBLE-02S electronic speed con-

troller, and light system, Pulse Width Modulation (PWM) signaling has been used.

PWM is a type of modulated digital signal used mostly in control applications [46].

By describing how much a signal is high and low with respect to time, the duty cycle

is measured which is given in percentage. One could observe the signal illustration

given in 3.12 to see how commonly used duty cycles look like. In a control circuitry, by
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Figure 3.11.: Hardware overview of A4MCAR

achieving various duty cycles, dimming a light or controlling the direction or speed of a

motor is possible [46].

Figure 3.12.: Duty cycle example in pulse width modulation [46]
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• UART: The RN-42 is a master-slave configurable bluetooth module (shown in Figure

3.11) that is programmed using AT commands via UART. In A4MCAR, a RN-42 blue-

tooth module is used in order to interact with the bluetooth of Android devices. UART

(Universal Asynchronous Receiver and Transmitter) is a communication protocol that

achieves simple communication of two equivalent nodes. UART is a half-duplex and

asynchronous serial protocol that doesn’t communicate using a clock. Half-duplex

nature of UART makes it so that transmitting and receiving lines can not be used si-

multaneously. It became a universal format because it is being used in telephone lines

and USB ports of computers for decades. Number of bits transmitted or received per

second is referred to as baud rate and it is standardized to values such as 9600, 14400,

19200, 38400, 57600, and 115200. A basic UART data packet is given in Figure 3.13.

The figure should depict that the basic format usually contains 6 to 8 data bits and start

and stop bits to mark start and stop of the data packet. It should be noted that there

are various formats with different sizes [47].

Figure 3.13.: Simple UART data packet [47]

• I2C: The proximity sensor network of A4MCAR that consists of four SRF-02 sonar sen-

sors uses I2C communication protocol in order to address devices in the network and

obtain distance information in centimeters. I2C (Inter integrated circuit) is a commu-

nication protocol that is intended for short distances to handle the communication of

multiple slave units with one or multiple master units. Its advantage is that it uses only

two wires in order to handle communication between many devices. Compared to the

very similar serial communication protocol SPI, I2C can support a multi-master system

with up to 1008 slave devices. I2C chips consist of two signals: clock signal SCL and

data signal SDA. Since signals are open drain, each signal must have a pull-up resis-

tor. The communication is handled by sending the address of the register and the data

to be sent in order to write into the registers of the I2C chips. A basic frame with 7

address bits and 8 data bits is given in Figure 3.14 [48].

• Ethernet/TCP: Ethernet communication using TCP (Transmission Control Protocol) is

a very common method of communation that is applied within the Application, Presen-

tation, and Session layers of the well-known OSI model. It is also a protocol that is
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Figure 3.14.: I2C protocol frame[48]

used for high-speed data transmission to other network devices on the same network

segment if used in Telnet mode. Ethernet defines two units of transmission, packet

and frame. The frame includes not just the payload of data being transmitted but also

the information identifying the physical Media Access Control (MAC) addresses of both

sender and receiver, VLAN tagging, quality of service information, and error-correction

information to detect problems during the transmission [49] [50].

In A4MCAR, a telnet server and client has been implemented using the TCP protocol

in order to send and receive data between the high-level and low-level modules. The

high-level module is configured as a client, whereas low-level module is configured as

the server.

• SPI: Just like I2C, SPI (Serial Peripheral Interface) is a communication protocol that is

used to send data between processors and small devices such as sensors or displays.

In SPI, MOSI, MISO, and SCK lines are available that are two data lines for each di-

rection and a clock line. Additionally, a line of SS (Slave Select) could be used in order

to select which slave device in the network is being addressd at that moment. Since

SPI does only work with a clock unlike the conventional UART, SPI is a synchronous

communication method [51].

In A4MCAR, SPI is used by the touchscreen kernel drivers in order to get touchscreen

controls working. HDMI interface is also used in order to transfer media from the

Raspberry Pi to the Touchscreen Display.

• CSI: CSI (Camera Interface) is used by third-party applications and it is the interface

that is used in order to get RaspiCam working.

In the Figure 3.15, the complete circuit schematics regarding the A4MCAR low-level module

is given. Interfacing sensors and devices should be handled accordingly in order to program

peripherals with xCORE-200 board properly.
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Figure 3.15.: Low-level module schematics of A4MCAR using XMOS xCore-200 eXplorerKIT

3.1.4. Safety and Power

As Figure 3.15 illustrates, there are three units that are introduced in order to get rid of the

problems that are related to safety and power. To start with, since it is stated in the XS-1

architecture datasheet [37] that XMOS works typically with 3.3V signals and SRF-02 sensors

use 5V signals [52], a 4-channel I2C-safe bi-directional 5V-3.3V Logic Level Converter from

Adafruit with model number BSS138 [53] has been used to convert the SDA and SCL lines

of the constructed I2C network.

The second issue to solve that occured to low-level having multiple motors connected is

the noise and excessive current drain into boards due to motors. Since that could lead to

damaged development boards and chips, the solution of using two seperate power lines

have been introduced. That is, using a 5V 10000mAh Powerbank to power the development

boards xCORE-200 eXplorerKIT and Raspberry Pi 3 using micro-USB connectors, while

using an external battery for the motors. That would reduce the noise that occurs in the

signal lines since the ground lines of each battery would be isolated. In order to be on the

safe side, a 5V 1A rated isolated voltage converter XP Power JCA0605S05 [54] is also used

in order to convert 7.2V battery voltage to power servo motor which is typically powered with

5V. Since the datasheet of the XP Power JCA0605S05 suggests that an emission circuit

should be constructed, the circuit in Figure 3.16 has been constructed and printed along the

isolated converter in order to meet the suggested emission level B [54].

Applying the mentioned solutions, the issues faced regarding the power voltage levels and
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Figure 3.16.: XP Power JCA0605S05 Level B Emission Circuit [54]

excessive current drain have been dealt with and the constructed system safety is en-

sured.

3.1.5. Mechanical Design

To construct A4MCAR’s exterior structure, the RC-Car chassis kit Tamiya TT01-E [55] has

been used. The chassis kit consists of several parts and it is a kit that is used in professional

RC-Car competitions. Figure 3.17 shows the constructed Tamiya TT01-E chassis kit along

with several other equipment that is used to construct the A4MCAR. Since the A4MCAR

does not only have basic driving elements but also many other equipments that are related

to sensing, processing, and power, the space on the RC-Car was not be enough to hold the

extra elements. Therefore, an extension to the existing chassis was needed. To solve this

problem, an extension have been designed that is able to hold other elements used in the

board with holders and screws.

Figure 3.17.: Tamiya TT01-E Chassis and other parts used in A4MCAR
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An illustration of the mechanical overview that shows the designed model is shown in 3.18.

This mechanical layer has been designed using a 3D model software (Google SketchUp)

and the software output with the .STL extension is used for the layer production using a 3D

printer called Ultimaker. Using appropriate 1mm to 2mm diameter screws, the constructed

body is installed to the main chassis as an extension layer and the other elements are

installed on top of this extension layer.

Figure 3.18.: Mechanical overview of the A4MCAR

3.2. Low-Level Module Design and Implementation

3.2.1. Overview

As mentioned in the Section 3.1.2.1, the low-level module software has been implemented

on the xCORE-200 eXplorerKIT using the development platform xTIMEcomposer 14.2.3.

While developing with xC on xTIMEcomposer, task communication is handled by channels

and interfaces. In A4MCAR, for the sake of structured development with defined variable

types, interfaces are more commonly used for user-defined tasks. An software design anal-

ogy of equating provided interfaces to client interfaces in xC could be made. Similarly,

required interfaces could be thought of server interfaces in xC. Using this analogy, the de-
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signed software components could be illustrated with a SysML [56] diagram as shown in

Figure 3.19.

Figure 3.19.: Brief block diagram for the developed tasks and interfaces for low-level module

The complete component diagram of the developed software is shown in Figure 3.20.

Figure 3.20.: Block diagram for the developed tasks and interfaces for low-level module

In xC, two essential concepts are worthy to explain in order to understand multi tasked

development. At first, a task is created and the second is how tasks are connected. A task
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in xC is nothing but a function that has client and server ports with interfaces. Once all

functions are connected using globally instantiated interface variables they start acting as

tasks. An example of how a task function is declared and how functions are placed on cores

and interconnected are shown in Listing 3.1 and Listing 3.2, respectively.

1 [[combinable]]

2 void Task_GetRemoteCommandsViaBluetooth(client uart_tx_if uart_tx,

3 client uart_rx_if uart_rx,

4 client control_if control_interface,

5 client steering_if steering_interface,

6 server ethernet_to_cmdparser_if

cmd_from_ethernet_to_override,

7 client lightstate_if lightstate_interface);

Listing 3.1: An Example Task Decleration in xC

In the code given with the Listing 3.1, it is shown that the function prototype has several

arguments such as client and server interfaces. Those interfaces indicate the role of the data

communication using the respective interface. When a task function takes client interface as

an argument, it means that the task function sends data to that interface, whereas when a

task function receives a message using event handles, it is given by the server keyword.

1 par {

2 // I2C Task

3 on tile[0] : Task_MaintainI2CConnection(i2c_client_device_instances, 1, PortSCL, PortSDA

, I2C_SPEED_KBITPERSEC);

4
5 // Motor Speed Controller (PWM) Tasks

6 on tile[0].core[4] : Task_DriveTBLE02S_MotorController(PortMotorSpeedController,

control_interface, sensors_interface);

7
8 // Steering Servo (PWM) Tasks

9 on tile[0].core[4] : Task_SteeringServo_MotorController (PortSteeringServo,

steering_interface);

10
11 // Core Monitoring Tasks

12 on tile[0]: Task_MonitorCoresInATile (core_stats_interface_tile0);

13 on tile[1]: Task_MonitorCoresInATile (core_stats_interface_tile1);

14 }

Listing 3.2: An Example of How Tasks are Placed and Interconnected in xC

The Listing in 3.2 shows in which tile and at which core a task is placed. Using the par

keyword (given in Line 1), every line of code in that particular code block will be paralellized

using the scheduler of xCORE.
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All the source and header files that contain task functions and that are developed in this

fashion are shown in Figure 3.21.

Figure 3.21.: Full file tree for all the tasks developed for low-level module

3.2.2. Actuation

3.2.2.1. Acceleration

For acceleration and deceleration, a brushless DC motor is controlled by delivering PWM

signals to the TBLE02-S Electronic Speed Controller. The task and how it is connected to

other tasks can be seen in Figure 3.19. In order to deliver the desired PWM signal, a task

that uses timers has been created which is given in Listing 3.3. The created template of

the task in Listing 3.3 is not only used for the acceleration task, but also for the other tasks

that use PWM signaling to control other devices. In those tasks, it is shown that in order to

generate the desired duty cycle, the amount of time for which the output signal must be on

and off are calculated (Lines 19 through 38) and the output port is toggled (Lines 39 through
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48) accordingly. The port toggling is done inside a timer event (shown in Line 17) that is

dynamically delayed given the calculated on and off times.

1 [[combinable]]

2 void Task_DriveTBLE02S_MotorController (port p, server control_if control_interface, server

distancesensor_if sensors_interface)

3 {

4 while(1)

5 {

6 select

7 {

8 //Wait for the direction value

9 case control_interface.ShareDirectionValue (int direction):

10 direction_val = direction;

11 break;

12 //Wait for the speed value

13 case control_interface.ShareSpeedValue (int speed):

14 speed_val = speed;

15 break;

16 //Calculate PWM periods and apply period within the timer

17 case tmr when timerafter(time) :> void :

18 tmr :> time;

19 if (direction_val == FORWARD){

20 if (speed_val == 0){

21 on_period = TBLE02S_FWD_MINSPEED_PULSE_WIDTH;

22 }else if (speed_val > 99){

23 on_period = TBLE02S_FWD_MAXSPEED_PULSE_WIDTH;

24 }

25 else{

26 on_period = (TBLE02S_FWD_MINSPEED_PULSE_WIDTH - ((

TBLE02S_FWD_MINSPEED_PULSE_WIDTH -

TBLE02S_FWD_MAXSPEED_PULSE_WIDTH) * (speed_val/100.0)));

27 }

28 off_period = overall_pwm_period - on_period;

29 }else if (direction_val == REVERSE){ //Reverse speed 0-100 mapping to on

period

30 if (speed_val == 0){

31 on_period = TBLE02S_REV_MINSPEED_PULSE_WIDTH;

32 }else if (speed_val > 99){

33 on_period = TBLE02S_REV_MAXSPEED_PULSE_WIDTH;

34 }else{

35 on_period = (TBLE02S_REV_MINSPEED_PULSE_WIDTH + ((

TBLE02S_REV_MAXSPEED_PULSE_WIDTH - TBLE02S_REV_MINSPEED_PULSE_WIDTH)

* (speed_val/100.0)));

36 }

37 off_period = overall_pwm_period - on_period;

38 }

39 //PWM Port Toggling
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40 if(port_state == 0){

41 p <: 1;

42 port_state = 1;

43 time += on_period; //Extend timer deadline

44 }else if(port_state == 1){

45 p <: 0;

46 port_state = 0;

47 time += off_period; //Extend timer deadline

48 }

49 break;

50 }

51 }

52 }

Listing 3.3: Created PWM signaling template

The desired PWM pulse widths are taken from the TBLE02-S Electronic Speed Controller

manual and the overall PWM period has been set to 20ms which is the standard period for

most of the controllers. Since the motor speed can be very high but is not desired to that

extent in our application, the pulse widths are manipulated in order to reach lower speeds in

full force. The interface control_if (Line 9 and Line 13) is used that delivers a number be-

tween 0-100 in order to express speeding information while also delivering a direction value

which is either FORWARD (0) or REVERSE (1). With this information, the developed task

is able to control the acceleration of the A4MCAR. Additionaly, the acceleration task is mod-

ified in order to control acceleration using the proximity sensor inputs for safety. Minimum

safest front distance is set to 50 centimeters.

The acceleration task and how data is transferred between other tasks can be seen in the

software component diagram in Figure 3.19 with the acceleration task having the function

name Task_DriveTBLE02E.

3.2.2.2. Steering

Steering of the A4MCAR is done with the help of a Servo motor that is also controlled with

PWM signaling. As mentioned in Section 3.2.2.1, the tasks that are related to PWM use the

template from Listing 3.3. For steering the interface steering_if is used which is set to 0

for very left and 100 for very right positions. Additionally, the following two changes that are

made to the acceleration task (from Listing 3.3) could be listed as follows:

• The pulse widths are altered in order to conform a servo motor’s behavior which is

usually 1.5ms pulse for stationary position, 1-1.5ms for left steering and 1.5-2.0ms for

right steering. For the A4MCAR, these values are set to 1.3-1.5ms for left steering

and 1.5-1.75ms for right steering in order to get rid of the issue that the servo motor
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is turning more than its holding platform could handle what may result in damaging its

gears.

• On and off periods are calculated differently as compared to the Listing 3.3. The Listing

in 3.4 shows the calculation of the periods using the pulse width values.

1 if (steering == 0){

2 on_period = STEERINGSERVO_PWM_MAXRIGHT_PULSE_WIDTH;}

3 else if (steering > 100){

4 on_period = STEERINGSERVO_PWM_MAXLEFT_PULSE_WIDTH;

5 }else{

6 on_period = (STEERINGSERVO_PWM_MAXRIGHT_PULSE_WIDTH - ((

STEERINGSERVO_PWM_MAXRIGHT_PULSE_WIDTH - STEERINGSERVO_PWM_MAXLEFT_PULSE_WIDTH)

* (steering/100.0)));

7 }

8 off_period = overall_pwm_period - on_period;

Listing 3.4: Calculation of on and off times for servo control

The steering task and how data is transferred between other tasks can be seen in the soft-

ware component diagram in Figure 3.19 with the steering task having the function name

Task_SteeringServo.

3.2.2.3. Braking

Since the motor that is used in A4MCAR is a brushed motor, it does not come with braking

features. Therefore, a braking mechanism is needed. For this purpose, a 2-channel relay

board from Sainsmart (shown in Figure 3.22) is applied to the A4MCAR to short circuit the

terminals of the motor when braking is required. In Figure 3.23, the circuit portion that is

controlling the operation of the brake is given.

Figure 3.22.: Two-channel relay board that is used for braking
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Figure 3.23.: Relay circuit to control braking

Normally, the terminals of the motor and the motor driver (Electronic Speed Controller TBLE-

02) are connected together. Using the switching mechanism that is provided by the relays,

motor terminals are short circuited when the relays are activated.

Relays have three essential input or output signals that are used in operation. Those signals

involve IN, NO, NC, and COM. With simple switching in mind, the operation of the relay can

be described as follows. When the IN signal is low, the COM is short circuited with NO

whereas when the IN signal is high, the COM signal is short circuited to NC signal.

By using this mechanism and using the COM signal output, the motor is supplied by the mo-

tor driver signal normally and motor terminals are short circuited when braking is required.

The control has been applied by giving the same input to IN1 and IN2 signals, IN signals for

each relay, from the xCORE-200 eXplorerKIT. The integration of the braking mechanism to

the system is done at the acceleration task, in which when the received speed is zero, brake

is activated. Since the relay works with only 5V input signal for the IN terminal, BRAKEctrl

signal, given in Figure 3.23 is connected to the xCORE-200 eXplorerKIT through a 5V to

3.3V converter, which is also shown in the schematics given in the Figure 3.15.

3.2.3. Proximity Sensing

As stated in the Section 3.2.1, the proximity sensing is handled via four SRF-02 ultrasonic

sensors connected to an I2C network. In the software, lib_i2c from XMOS is used in order

to handle communication with the peripheral.

The pseudo version of the proximity sensing task is given in Listing 3.5. The proximity

sensing task is a periodic task that polls individual ultrasonic sensors using their respective

addresses (Line 12 and Line 13) in order to obtain what is the distance perceived by front,
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rear, left, and right sensors. In order to handle this in a modular manner, device addresses

are placed in the header file of the proximity sensing task source files. Furthermore, the task

that maintains I2C communication alongside proximity sensing task is seperated and the two

tasks are connected using the i2c_master_if interface (shown in Line 1). The sensing is

achieved every 0.2 seconds via a timer event (shown in Line 7) and when the sensing of

each sensor complete, the value is sent by its respective interface distancesensor_if to

the acceleration task (Line 22).

The proximity sensing task and how data is transferred between other tasks can be seen in

the software component diagram in Figure 3.19 with the proximity sensing task having the

function name Task_ReadSonarSensors.

1 void Task_ReadSonarSensors(client i2c_master_if i2c_interface, client distancesensor_if

sensors_interface)

2 {

3 // .. Declaration of some variables..

4 while (1) {

5 select

6 {

7 case tmr when timerafter(time) :> void :

8 //Initialize messaging

9 InitializeMessaging(i2c_interface);

10 // For Left Sensor

11 // Read from high and low byte respectively

12 high_byte = i2c_interface.read_reg(getDistanceSensorAddr(

LEFT_DISTANCE_SENSOR_ID), 0x02, result);

13 low_byte = i2c_interface.read_reg(getDistanceSensorAddr(

LEFT_DISTANCE_SENSOR_ID), 0x03, result);

14 // Construct the distance information in centimeters

15 acc = (high_byte * 256) + low_byte;

16 if ((acc < 600) && (acc > 0)) // Distance should be in between 600cm and 0cm

17 left = acc;

18 else

19 left = 0;

20 //...repeated for other sensors...

21 // Send sensor values all together

22 sensors_interface.ShareDistanceSensorValues (left, right, front, rear);

23 // Delay

24 time += delay;

25 break;

26 }

27 }

28 }

Listing 3.5: Proximity sensing task
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3.2.4. Lighting System

The light system of the A4MCAR is a light module from the RC-Car parts producer Mod-

elcraft that is driven with PWM. The module uses two PWM channels: one for the light

adjustment due to the steering input, one for light adjustment due to acceleration input. Sim-

ilarly to all the other PWM control tasks, the PWM signal generator template that is given in

3.3 has been used in order to the generate correct pulse widths for the light system. The

task that is given in 3.3 has been adjusted to have two timer events for each PWM channel

as opposed to one timer event. Desired pulse widths for several modes are contained in the

header file of the light system task and these modes have been selected given the steer-

ing, angle, and gear inputs from the Bluetooth communication task. The functions regarding

pulse width time generation (with 1ms to 2ms pulse length) for different light system modes

(acceleration, braking, turning right or left) have also been created.

The light system task and how data is transferred between other tasks can be seen in the

software component diagram in Figure 3.19 with the light system task having the function

name Task_ControlLightSystem.

3.2.5. Bluetooth Communication

In order to configure the RN42 Bluetooth module [57] as a slave to communicate with the

Android phone and received data, the UART communication has been implemented using

lib_uart from XMOS. In order for the UART communication to be handled correctly, CTS

and RTS pins of the RN42 module should be short-circuited since a data flow protocol such

as RS232 is not used in our application. The UART library has been configured to have a

buffer size of 512 bytes and a baudrate of 115200bps which is a high speed UART data rate

standard that conforms many microcontrollers. Several tasks have been implemented such

as uart_rx, uart_tx, and the Bluetooth communication task in order to implement bluetooth

control feature into the A4MCAR. While the uart_rx and uart_tx tasks handle port accesses

and data transfer in respective directions using sporadic events, the Bluetooth communi-

cation task is responsible for configuring the Bluetooth module and receiving driving com-

mands. For an easy communication, a string with a number of bytes is constructed and

interpreted by the Bluetooth communication task. This string which is referred in this thesis

as driving command is given and explained in the Figure 3.24. The command parsing and

how the received data is accumulated to other tasks is given in the Listing 3.6.

The operation of this portion of the task is explained as follows:

• A preprocessor macro is defined which is RN42_INITIAL_CONFIG. This macro ac-

tivates the configuration function to configure the RN42 module in slave mode. This
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Figure 3.24.: Driving command string format generated to contain speed, angle, and gear
information

configuration is shown line 2 of the Listing 3.6. It should be noted that the configuration

should only be done once per bluetooth module.

• Receiving driving commands using the UART receive event (Listing 3.6, Line 7), in-

tegrity check for the command (Line 20), and command parsing (in order to obtain

speed, angle, and gear values) (Line 21) are implemented.

• Since the driving command is not the only source of actuation data source for the

A4MCAR and it could have overriding commands over Ethernet from the high-level

module image processing task, ethernet override is handled with an integrated event

in the Bluetooth communication task (shown in Line 11 in Listing 3.6).

• Reverse driving mode is not entered by the TBLE02-S Electronic Speed Controller

unless the motor fully stops. To achieve this, normally the user has to select reverse

mode several times from the controller. In order to get rid of this issue, once the

reverse command is received, the software enters the reverse mode a few times with

very short delays, thus users can select it only once and enjoy driving without having

to select the mode multiple times by themselves. This implementation is shown in Line

23 in the Listing 3.6.

• The obtained control and steering values are sent to the associated task functions in

order to handle the actuation (Listing 3.6, Lines 27 through 29).
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1 //... Decleration of some variables ...

2 #ifdef RN42_INITIAL_CONFIG

3 InitializeRN42asSlave(uart_tx);

4 #endif

5 while (1) {

6 select {

7 case uart_rx.data_ready(): //Read when data is available

8 data = uart_rx.read();

9 // ... Read byte and fill the buffer ...

10 break;

11 case cmd_from_ethernet_to_override.SendCmd(char* override_command, int cmd_length):

12 // ... Fill the buffer with override command and raise

13 // the flag to show override occured ...

14 break;

15 //Process the commands received above in a timer event

16 case tmr2 when timerafter(time2) :> void : // Timer event

17 time2 += delay2;

18 if ( command_line_ready ){

19 // Check if incoming data is as expected..

20 if ( CheckIfCommandFormatIsValid(command) == 1 ){

21 {speed, steering, direction} = ParseRCCommandString (command);

22 //...Send light system mode given our speed, steering, and direction...

23 if (previous_direction == FORWARD && direction == REVERSE){

24 //Commands to cheat into REVERSE mode

25 CheatIntoReverseMode();

26 }

27 steering_interface.ShareSteeringValue(steering);

28 control_interface.ShareDirectionValue(direction);

29 control_interface.ShareSpeedValue(speed);

30 command_line_ready = 0;

31 previous_direction = direction;

32 previous_lightstate = lightstate;

33 }

34 }

35 break;

36 }

37 }

Listing 3.6: Bluetooth communication task pseudocode

The bluetooth communication task and how data is transferred between other tasks can be

seen in the software component diagram in Figure 3.19 with bluetooth communication task

having the function name Task_MainProcessingAndBluetoothControl.
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3.2.6. Ethernet (TCP) Server Implementation

TCP server of the A4MCAR low-level module acts as the only source of communication

that is implemented between the low-level module and the high-level module. The TCP

communication that is implemented for this basic data transmission and reception is called

as Telnet [58]. As mentioned, while overriding driving command (Figure 3.24) is sent from

high-level module (configured as the Telnet server) to low-level module (configured as the

Telnet client), for the visualization purposes the core utilization information is sent from low-

level module to high-level module. On the low-level side, library that is provided from XMOS

lib_xtcp is used with the following adjustments:

• The application notes from XMOS involves only UDP applications. This application

has been manipulated in order to support the TCP protocol based Telnet server

• The TCP server has been configured with a static IP address and with a bind port.

• Data receiving and transmitting event handlers as well as the interface that sends the

driving command to the Bluetooth communication task are implemented.

• Since the media-independent interface (MII) of xCORE-200 eXplorerKIT supports up

to 1000Mbps high-speed connection (RGMII), the ethernet server task takes up to 3

to 4 cores in order to be executed concurrently. In order to reduce the excessive core

usage, this interface has been reduced to a speed of 100Mbps by the software that

takes about 2 cores in order to be parallelized efficiently. Furthermore, it is important

to mention that since application in the A4MCAR does not require a gigabit ethernet

connection, this decrease in the speed did not affect the performance of the commu-

nication.

The TCP server task and how data is transferred between other tasks can be seen in the

software component diagram in Figure 3.19 with TCP server task having the function name

Task_EthernetServer.

3.2.7. Core and Tile Monitoring

The core monitoring task, that is responsible for identifying core utilization percentage and

sending it to the TCP server, is created for the two individual tiles of the xCORE-200 eX-

plorerKIT. By checking the status register XS1_PSWITCH_T0_SR_NUM that is mentioned in the

XMOS datasheet [37], and polling this register with a maximum polling rate of 1250Hz,

whether a core is busy or idle at a given time is detected. A code snippet that is responsible

for this operation is given in Listing 3.7.
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1 default://Timer event with maximum possible polling rate

2 //For each core in the tile

3 for (t = 0; t <= 7; t++) {

4 // Read the processor state

5 int ps_value = getps(0x100*t+4);

6
7 // Read the status register

8 unsigned int sr_value;

9 read_pswitch_reg(tile_id, XS1_PSWITCH_T0_SR_NUM+t, sr_value);

10
11 const int in_use = (ps_value & 0x1);

12 const int waiting = (sr_value >> 6) & 0x1;

13 if (in_use) {

14 if (waiting) {

15 core_idle[t] += 1; //Count this cycle as idle

16 } else {

17 core_busy[t] += 1; //Count this cycle as busy

18 }

19 }

20 }

21 break;

Listing 3.7: Finding busy and idle cycles in XS1 architecture

In Listing 3.7, the status register XS1_PSWITCH_T0_SR_NUM and the processor state are read

(Line 5 and Line 9, respectively) for every core in order to find which core is idle and which

core is busy at that moment.

The obtained busy and idle cycles are then converted to a percentage value with the follow-

ing Equation:

core_usage_percentage =
busy_cycles

busy_cycles+ idle_cycles
100 (3.1)

Further features introduced in the core monitoring task are listed as follows:

• An interface is created (core_stats_if in Figure 3.19) in order to periodicallysend core

utilization percentage to the TCP server task.

• A preprocessor macro FLOATING_POINT_SHOW is also created in order to find core uti-

lization percentage in floating point format for better precision if desired.

Observing the results showed that the user created applications for the low-level module in

A4MCAR are not very time intensive. Consequently, that is why some of the tasks resulted

in a core utilization value that is lower than 0 percent in utilization according to the used core

monitoring approach.
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The core monitoring tasks and how its data is transferred between other tasks is shown

in the software component diagram in Figure 3.19 with tasks having the function names

Task_MonitorCores.

3.3. High-Level Module Design and Implementation

3.3.1. Overview

The high-level module of the A4MCAR is composed of several processes and threads run-

ning under the Raspbian [41] distribution of Linux Operating System that is designed for

the Raspberry Pi 3. In the Section 3.1.2.2, the operation of the Linux kernel is briefly in-

troduced. During the compilation, debugging and execution of the developed processes,

several development platforms such as Python 2.7 shell [59], GNU C Compiler (GCC) [60]

are used. Although it should be noted that remote development using Eclipse IDE [61] is

also possible, the development of the A4MCAR has been done using the aforementioned

development platforms by connecting into the Raspberry Pi 3 using SSH connection. While

the main processes involve C, C++, Python, and Bash [62] languages, via the capability

of the integrated web server to serve web pages, several other scripting and markup lan-

guages such as HTML, CSS, JavaScript (with AJAX [63] and jQuery [64] frameworks) have

also been used. The operation of the user developed processes along with third party utility

processes and threads that are integrated into the system are given in the Figure 3.25. In

the figure, yellow blocks represent threads, blue blocks represent mapped-memory-based

inter process communication, whereas white blocks are dedicated to processes.

Since cross development platforms using languages such as C, C++ and Python have been

used at the A4MCAR high-level module, the multi-tasking is handled mostly in the process

layer rather than at thread or task level. This means that each process are executables of

their own using different libraries and compilers. However, the touchscreen display process

and dummy graph are designed with several threads.

In Figure 3.25, it is also shown that the communication between user developed processes

are handled with mostly via file accesses (technically called as mapped memory communication).

All file accesses are asynchronous and there is no event to wait for data or require data within

some time as it is in the low-level module inter-process communication. This should indicate

that the communication using read-write accesses does not constrain the processes as it

is in a regular inter-process communication. Furthermore, it should be noticed from Figure

3.25 that although a process is able to read from many files, there is no example of two or

more processes trying to write to the same file. Reading from many files is not critical, while

the latter (i.e. two or more processes trying to write to the same file) should be handled by

63



3. Distributed Multi-core Demonstrator (A4MCAR) Design and Implementation

Figure 3.25.: High-level module software component diagram including files and file accesses

cross-process mutexes or semaphores that would be able to lock and unlock the same phys-

ical memory space from cross-processes. Although rarely used in A4MCAR’s touchscreen

display, it must be known that by using the existing cross-process mutexes or creating a

semaphore mechanism, one should be able to allow two or more processes to write to the

same file [44]. However, it must be pointed out that the locking of the files are handled with

the locks from OS kernel in the case of A4MCAR and there is no need to create new locks

in the applications for file accesses.

The way multi-tasking is handled within this constructed software architecture (Figure 3.25)

is that every process is run by an external script at boot time (or via touchscreen interface,

which is the main control interface in our case) and their scheduling is handled by the Linux

kernel. While the scheduling is not manipulated, the mapping or pinning of processes to

different cores and evaluating them are the focus of A4MCAR in order to find the most

optimal parallelization solution.

Regarding hardware, the high-level module is connected to two devices. The interfacing
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of these devices, a Raspberry Pi camera v2.0 and a Touchscreen display is illustrated in

Figure 3.11. It is shown in the figure that interfaces such as HDMI, SPI, and CSI have

been utilized. In the following sections, hardware communication and the related software is

further explained.

3.3.2. Implemented Online Timing Features and Making Processes
Schedulable

In order to seek an assessment technique to compare timing performance of different dis-

tributions and to ensure that the developed processes and threads are schedulable, online

timing features are implemented in the user-developed processes of the high-level module

of the A4MCAR. Thus, while applications are running, a performance evaluation is done with

the help of the those features. The code skeleton is developed for both Python and C,C++

applications and the applications are integrated on top of the skeleton with timing features.

Therefore, it is important to understand how each application that will be discussed in the

following sections performed regarding timing.

Recall that in the Section 2.7 the timing properties in a scheduled system are explained

as shown in Figure 2.4. By observing the figure, limitations of implementations and the

implemented timing features could be listed as follows:

• Because the values such as IPT, CETs and RT (referred from the Figure 2.4) are out of

our reach and they are hidden in the Linux kernel, in the online timing analysis features

that are implemented, those values have been neglected. With the help of the offline

scheduling analysis, however, CET values can be easily obtained.

• Recording the start and end times of tasks requires an accurate clock. For that pur-

pose, in computers in general there are two types of clocks: (1)- User CPU clock and

(2)- System CPU clock. While the user CPU clock is used for finding out how long it

has passed since the program has started, the system CPU clock takes place in the

kernel space and measures how long it has passed since 1st of January, 1970. The

latter clock was found as the viable solution as compared to the user CPU clock since

the user CPU clock does not the allow comparison along the entire Linux kernel. In

the code, functions time.time() for Python and clock_t clock() have been used in

order to record start and end times more accurately [65] [66].

• Finding the execution time (ET) of one task/process iteration using the following Equa-

tion, provided that start_time is the time recorded before the iteration and end_time

is the time recorded after the iteration. The units are all denoted in seconds.

execution_time = end_time− start_time (3.2)
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In the version that is developed for the C language, since clock_t is able to measure

clock cycles rather than seconds, the Equation is changed to the following:

execution_time =
end_time− start_time

CLOCKS_PER_SEC
(3.3)

• Finding the slack time (ST) is one of the most important tasks that is within the scope of

the online timing features. As a rule of thumb, we could assess the timing performance

by saying that if a process has a higher slack time than before, it means that task is

better utilized compared to before. This is because of the fact that the CPU is doing

some other task which results in a higher slack or idle time. The slack time of a

previous iteration is measured by the following equation, provided that the calculation

takes place right after start time is recorded and IPT is neglected.

previous_slack_time = start_time− end_time (3.4)

It should also be noted that the C language version could be created by dividing the

clock cycles with the clock cycles per second (CLOCKS_PER_SEC) in the same manner

as execution time.

• In order to keep a constant period while the process is scheduled, the processes are

delayed dynamically between each iteration. Thus, processes which have a constant

period could be modeled easier and having the constant period will make the process

or thread schedulable. In order to achieve a constant period each process are delayed

by the following:

delay_time = period− execution_time (3.5)

However, if the execution time of a process is bigger than its period, that process

is counted as a process that missed its deadline, given that its period is equal to

its deadline due to practicality. In addition, the deadline miss percentage is another

important criteria in order to assess parallelization quality as it is normally undesired

to have any missed deadlines. In case of a missed deadline in A4MCAR, the process

is not delayed.

• As seen in Figure 3.25, there are many timing log files that are created. Those timing

log files are created within every user-defined process and later used in the Touch-

screen Display application.

While each processes and thread are constructed in the aforementioned manner in terms of

traceability, the overall online evaluation is handled within the Touchscreen Display process

in the TimingCalculation thread (shown in Figure 3.25), in Chapter 4, the details about these

are given.
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An example of the timing skeleton for Python-running processes is given in Listing 3.8. The

user-defined Python-running applications have been created using this template, and the

space that is left for task content is used for the actual features of that task.

1 #!/usr/bin/env python

2 import psutil

3 import time

4 import string

5 import numpy

6
7 #Initialization

8 _DEADLINE = 1.40

9 _START_TIME = 0

10 _END_TIME = 0

11 _EXECUTION_TIME = 0

12 _PREV_SLACK_TIME = 0

13 _PERIOD = 1.40

14
15 def CreateTimingLog(filename):

16 global _START_TIME

17 global _DEADLINE

18 global _END_TIME

19 global _EXECUTION_TIME

20 global _PREV_SLACK_TIME

21 global _PERIOD

22
23 try:

24 file_obj = open(str(filename), "w+r")

25 except Exception as inst:

26 print inst

27 _END_TIME = time.time()

28 _EXECUTION_TIME = _END_TIME - _START_TIME

29 try:

30 file_obj.write(str(_PREV_SLACK_TIME)+' '+str(_EXECUTION_TIME)+' '+str(_PERIOD)+' '+str(

_DEADLINE))

31 file_obj.close()

32 except Exception as inst:

33 print inst

34
35 while True:

36 #Timing Related

37 _START_TIME = time.time()

38 _PREV_SLACK_TIME = _START_TIME - _END_TIME

39
40 #####

41 #TASK CONTENT GOES HERE

42 #####
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43
44 #Timing Related

45 CreateTimingLog("deadline_logger_burn_cycles_around25_1.inc")

46
47 #Sleep

48 if(_PERIOD>_EXECUTION_TIME):

49 time.sleep(_PERIOD - _EXECUTION_TIME)

Listing 3.8: Online timing features implemented in Python language

With the given code by the Listing 3.8, following remarks can be made:

• Lines 2 through 5 indicate which libraries are used.

• Between the Lines 8 and 13, global variables to hold the time values are initialized.

• A timing data logging function is created (Lines 15 through 33). In this function, timing

log file is opened (Lines 23 through 26), execution time is calculated after end time

is recorded (Line 27 and Line 28) and then all the timing values at that instant are

written into the opened text file (Lines 29 through 33). After the write operation the file

is closed (Line 33).

• In the loop section of the process start time and previous slack time are recorded

(Lines 37 through 38) before the actual task content (Lines 40 through 42) is executed.

After the task content is executed, timing log is created by using the timing data logging

function (Line 45) and then the task is delayed according to its period by finding the

delay_time that was given in Equation 3.5. This delay operation is also given in the

Listing 3.8 at the Lines 48 through 49.

3.3.3. Core Reader

To support the utilization assessment and visualization purposes, a core reading process is

developed that monitors cores periodically and writes the core usage information to a text

file. For that purpose, the psutil module [67] from Python is used. The psutil module allows

to find information of Linux processes and cores. The core usage information for four cores

of Raspberry Pi that is logged into a text file is then used for visualization in the web interface

and the touchscreen interface.

With the help of a simple function, the core usage information is easily retrieved. The function

is given in the Listing 3.9. It should be noted that d in the listing is an array with 4 elements,

each of which indicating thecore usage for an individual cores.
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1 if (_PERIOD>_EXECUTION_TIME):

2 d = psutil.cpu_percent(interval=(_PERIOD - _EXECUTION_TIME), percpu=True)

Listing 3.9: Psutil function to retrieve core utilization information

3.3.4. Ethernet (TCP) Client Implementation

In Section 3.2.6, the TCP server implementation using the xCORE-200 eXplorerKIT is dis-

cussed. In order to maintain a sound data communication between low-level module and

high-level module, a TCP client process is implemented in the high-level module. Since the

Python language offers very stable and easy-to-use threading support and exception han-

dling, the TCP client implementation is achieved by using Python. The socket library [68]

in Python is capable of delivering several functions and objects that are required for this

purpose. The TCP client has been configured to have non-blocking data reception with 0.5

second period and with a timeout of 2 seconds. While the data reception is handled by an

additional thread, operations such as connecting to the server, binding to the server port,

and sending data periodically is handled in the main thread. The overriding driving com-

mand which is send to the low-level module is read from the file before data transmission.

It should be also noted that after the data reception the content is written to the file which

is responsible for holding low-level module core usage information. This communication be-

tween high-level module and low-level module is illustrated in the deployment diagram given

in Figure 3.26 (to be explained in the following sections).

Figure 3.26.: Deployment diagram showing Ethernet communication
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3.3.5. Web Server and its Applications

3.3.5.1. Web Server

In order to develop a web interface for the A4MCAR, a web server is installed and configured

on the high-level module. Web servers are responsible for processing HTTP requests and

delivering HTTP responses [69]. The HTTP requests and responses are usually visualized

using a web browser from clients in the form of web pages [69]. At the A4MCAR high-

level module, the Apache 2 web server is installed and configured as the web server since

it is an open-source, robust, light-weight cross-platform that has a large user community.

Additionally, another reason Apache 2 is selected is that it is capable of serving for script

languages such as PHP and Python, which are used at the A4MCAR applications.

Just like a Telnet server, a web server is bind to a port in a wireless or wired network.

Although for different communication channels one could use different ports, web servers

usually use the port number 80. Another difference of a web server is that unlike a telnet

server, the data that is sent and interpreted is in the HTTP (HyperText Transfer Protocol) [70]

format unlike the TCP (Transmission Control Protocol) format. How web servers and web

browsers work in order to help visualize web pages is illustrated with the Figure 3.27 [70].

Figure 3.27.: How web servers and web browsers work illustrated [70]

The following technologies have been used in order to create dynamical webpage:

• HTML: This markup language is used for defining how body elements are located in a

web page and including scripts.
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• CSS: CSS is used for defining the style of body elements. Borders, background prop-

erties, colors, button styles, positioning of elements are defined with CSS language.

• JavaScript: The JavaScript language is used for defining animations, as well as how

events would behave.

• jQuery: jQuery [64] is a JavaScript framework that is written using JavaScript which

helps to use define scripts easier than it is with the JavaScript. It is open-source and

widely used in almost every web page.

• AJAX: AJAX [63] is another framework for JavaScript which is used for handling dy-

namical HTTP requests without having to refresh the page. With the objects it delivers,

events such as key press, mouse events, or conditional events could be sent to server

and processed. The returned data could be processed using JavaScript in order to

dynamically update the web page content [63]. This mentioned working principle is

illustrated in Figure 3.28 [63].

Figure 3.28.: How AJAX works [63]

3.3.5.2. Web Page Design and Implementation

The web page that has been designed is shown in Figure 3.29. At the web page, a camera

stream, control buttons and sliders, and an information graph that shows core utilization in

both high-level and low-level module are embedded. For the static design of the web page

HTML and CSS are used, while the dynamical behavior of the web page is supported with

jQuery, AJAX, and Python. The dynamical behavior of the individual parts of the web page

will be explained in the following sections.
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Figure 3.29.: Web interface of the A4MCAR

An alternative to this interface has also been created which is used for smoother driving by

using arrow buttons. However, the interface that uses buttons can use only constant speeds

for actuation which are set to 80 percent of the full speed. The alternative interface can be

seen in Figure 3.30

The overall dynamical behavior of the web page is illustrated in a component diagram in

Figure 3.31. In this diagram, one must notice that the server page jqueryControl.php is

the main web interface. It has some server pages and files embedded to it in order to function

as a whole to deliver the features of controlling the A4MCAR, core utilization display, and

camera streaming. In the following subsections, each of these tasks is explained using the

component diagram shown in Figure 3.31.

3.3.5.3. Controlling A4MCAR via Web Page

At the top right of the Figure 3.29, the controls to drive the A4MCAR over web interface

are shown. It is shown that there are gear selection buttons such as Forward (FWD) and

Reverse (REV), along with two sliders. The sliders are created using the third party script
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Figure 3.30.: Alternative web interface of the A4MCAR

library called jquery_ui. While the vertical slider is for speed adjustment, the horizontal

slider is used for angle adjustment. Additionally, to select the very left, straight, and very

right angles the arrow buttons can be used.

With the help of jQuery and AJAX’ ability to create event handlers within the server pages,

on a button press or when slider position is changed, an event handler is run that collects

the position and gear information and sends it using HTTP GET request dynamically to

another server page called pythonControl.php (shown in Figure 3.29). With the idea of

demonstrating a basic AJAX request, an example is given in the Listing 3.10.

1 $.ajax({

2 url: "pythonControl.php?process=S0"+speed+"A0"+direction+gear+"E",

3 method: "GET",

4 data: {spd: speed, dr: direction, gr: gear} //This is not necessary in every request

5 }).done(function( msg ) {

6 alert( "Data Saved: " + msg );

7 });

Listing 3.10: Sending dynamic HTTP GET requests using jQuery

As it is seen from the Listing 3.10 url field, the information that is sent is nothing other

than the format defined for the bluetooth communication in the low-level module, which is
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Figure 3.31.: Component diagram showing how communication inside the created web-interface
works

given in Figure 3.24. In the Figure 3.29, it is seen that after the information is received by

pythonControl.php, using the ability of PHP to run a shell script, a Python script is run using

the Python shell automatically. The python script, whenever executed, writes the received

driving command information into the text file that holds the driving command. This operation

is done asynchronously. How the driving command is sent afterwards is explained in Section

3.2.6.

3.3.5.4. Camera Streaming

For the camera streaming, the third party module mjpg-streamer [71] has been used. This

module is able to communicate over the CSI interface in order to generate a stream on a

network port, which then can be embedded to web pages. It is shown at the Figure 3.31

how this module works along with the Apache2 Web Server.

For the stream, Raspberry Pi camera version 2.0 with the CSI interface is used which is

shown in Figure 3.32.
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Figure 3.32.: Raspberry Pi camera v2.0

Based on the documentation of the mjpg-streamer, a script using Bash language is created

which is used for generating a web stream with the correct parameters. These parameters

involve resolution, frames per second, quality value, and port on which the stream will be

generated. For the case of the A4MCAR, the experimental version of mjpg-streamer has

been used which is able to stream using the Raspberry Pi camera besides a webcam. By

using the experimental version library, the following setup is found to give robust performance

with respect to Raspberry Pi’s graphical computing power:

• Resolution: 640x480

• Frames per second: 30

• Quality: default

• Port: 8081

3.3.5.5. Core Utilization Display

Core utilization display is shown at the bottom of Figure 3.29. It is responsible for gathering

all the core usage information from the files, displaying a graph showing percentages, and

calculating average core utilizations. These operations are handled within the server page

utilizationGraph.php as shown in Figure 3.31. This server page is embedded into the

main web interface which is jqueryControl.php.

For the efforts regarding creating a graph, a third party script library called jqPlot [72] which

runs within the jQuery framework is used. The jqPlot offers various functions in order to
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create various plots such as bar graphs, line graphs, pie charts and 3D plots. In order to

embed the plots into the web page, AJAX has been used.

3.3.6. Dummy Loads and Dummy Graph

In order to fully utilize the developed parallel software on the high-level module under full

load, several processes have been created which do dummy operations to consume a cer-

tain percentage of the cores. Although the initial distribution does not involve dummy load

processes due to increased responsiveness, the dummy loads are used for stressing the

software. To create dummy loads, two ideas are investigated:

• Basic load with very short periods: While using this methodology achieves certain

core percentage loads, having a very short delay is considered to be non model-safe

and since periods of the processes are very short, timing logs resulted in deadline

misses for further analysis. Therefore, a new method of using bigger loads with bigger

periods is analyzed.

• Bigger load with bigger periods: While using a bigger load with bigger period is

also viable in achieving certain core percentages, the fluctuation in the core utilization

values is higher than the previous option. This fluctuation is trivial in our application as

most of the processes behave in this way.

1 a=numpy.random.random([1000,1000])

2 b=numpy.random.random([1000,1000])

3 c=numpy.mean(a*b)

Listing 3.11: Dummy load created with Python

In order to create the dummy loads in the code, matrix multiplication of random 1000

by 1000 matrices is processed. Python offers libraries to create those matrices as well

as to multiply them. The basic load that is written in Python is given with the Listing

3.11.

While various loads with the same matrix operation are created, it should be noted

that they differ in their iteration periods which helps to achieve different core utilization

percentages. The Table 3.1 shows a list of all dummy processes that are created in

order to help with the utilization research:

Although the aforementioned processes have been created to stress the Raspberry Pi to

find out the parallelization behavior under full utilization, several other purposes have also

been considered. One very important distinction that seperates APP4MC’s industrial use

from the A4MCAR is that the industry has sophisticated tracing and distribution tools and
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Process Name File Name Period Core Utilization

CycleWaster25_1 dummy_load25_1.py 1.4 second 25 percent

CycleWaster25_2 dummy_load25_2.py 1.4 second 25 percent

CycleWaster25_3 dummy_load25_3.py 1.4 second 25 percent

CycleWaster25_4 dummy_load25_4.py 1.4 second 25 percent

CycleWaster25_5 dummy_load25_5.py 1.4 second 25 percent

CycleWaster100 dummy_load100.py 0.50 second 100 percent

Table 3.1.: Dummy load processes running in high-level module

standards such as AUTOSAR. Thus, in industry, fine-grained runnables can be created and

distributed easily. However for the A4MCAR, experiments showed that distributing and trac-

ing such runnables are not so easy with sophisticated real-world applications. This means

that the granularity of processes and threads can have a huge size difference when the

functionality of the system is considered. Therefore, to demonstrate the partitioning feature

of the APP4MC as in an industrial application, a software graph that is called Dummy Graph

has been created using Python threads. The created software graph is illustrated in Figure

3.33.

The created graph depicts software runnables (in our case threads that are distributed) and

their global communication via shared variables. Each arrow represents a label access

and chronological execution order of runnables. For example, arrow pointing from B to F

indicates that B writes to a shared variable, and after it is done, F can read and start its

calculations. Inside the threads, dummy matrix multiplication with adjustable matrix size

(default: 190x190) is introduced. By looping this multiplication and writing a byte to a shared

variable after this is done, the dummy graph is constructed. As the legend of the image

suggests, each thread is activated using 0.5 second periodic activations and threads have

instruction sizes varying from approximately 9 million to 81 million, according to the dynamic

profiling results. Further discussions and results of this distribution is discussed in Chapter

5.

3.3.7. Image Processing with OpenCV

Developing cyber-physical systems with multiple sensors require a good knowledge of com-

puter vision. Automotive applications especially when developing Advanced Driving Asis-

tance Systems (ADAS) make use of this knowledge. Huge computational power need in-

volved in such applications makes such processes a challenge. Therefore, a demonstration

of an image processing application is crucial for the A4MCAR.
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Figure 3.33.: Dummy Graph that is created and its details

For the demonstration of parallelization of an image processing process along with several

other processes and threads, an application that can roughly detect a traffic cone has been

developed using the C++-based and well established computer vision library OpenCV [73].

The developed application makes use of the Raspberry Pi camera (using raspicam library)

to retrieve images and performs several transforms to the image to detect traffic cones. The

developed application outputs an "OBJECT FOUND" message to demonstrate its operation.

Example detections are given in Figure 3.34.

Figure 3.34.: Developed Image Processing Application

The applied transformations and how the traffic cone is detected is illustrated with Figure
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3.35. The idea that is depicted is to retrieve contours of the possible objects and then deter-

mine whether it is a traffic cone or not by filtering those contours by their sizes and aspect

ratios. In Figure 3.35, it is shown that several transformations are applied for this purpose.

Via creating the threshold image and then subtracting the background (steps: Background

AND, Flood Fill, Image Inversion, Bitwise OR), the image is prepared for the canny edge de-

tection step. The Canny Edge Detector, i.e. Canny function is able to find edges of desired

objects. By using edges, contours can be found which represent the outlines of objects.

By judging the contours regarding their sizes and aspect ratios the desired objects are de-

tected.

Figure 3.35.: Applied Functions in OpenCV to Detect a Traffic Cone

3.3.8. Touchscreen Display

3.3.8.1. Touchscreen Display Features

The touchscreen display that is embedded to the Raspberry Pi 3 features several functions.

It can not only show core the utilization graph, average utilization percentages, timing per-

formance, but it can also be used to manage and allocate the processes of the high-level

module. It also features connectivity settings in order to connect to an access point. Main

interface and buttons are shown in the Figure 3.36. Using the buttons in Figure 3.36 users

can switch between display modes, as well as go to the Settings menu, exit the touchscreen

application, and shutdown the Raspberry Pi.
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Figure 3.36.: Button functions of A4MCAR Touchscreen Display

3.3.8.2. Touchscreen Display Implementation

Regarding the hardware, a 5 inch HDMI touchscreen module from Waveshare has been

used. This module can act as a primary monitor for the Raspberry Pi. Additionally, the mod-

ule features touchscreen controls using the SPI pins of the Raspberry Pi GPIO. Regarding

the software interface to the Linux system, module driver is installed and calibrated on the

Raspberry Pi in order to use the module as a primary monitor.

The touchscreen display process uses a third-party library from Python that is called Pygame

[74]. This library is exclusively developed for creating Python language based games but it

is also useful for creating graphical interfaces. After the images for the interface have been

designed, the main interface has been created using the functions from Pygame. As an ex-

ample, one page is designed to show the system core utilization. In that page, visualization

is handled by creating rectangles that scale from 0 percent to 100 percent to show the core

utilization in each core that are obtained by reading the files that are responsible for holding

the core usage information for both low and high level modules.

Pages that are developed for the touchscreen module are shown in the Figure 3.39. In order

to understand the behavioral operation of the touchscreen process, the Figure in 3.38 can

be observed in parallel with Figure 3.39.

The introduction page that is shown in Figure 3.39 (a) is entered as the process is started.

After displaying the logo for 3 seconds, other pages are entered. The pages (b) through

(g) (shown in Figure 3.38) are navigated with the help of the Next and Previous button in

this state. Users can browse the settings page, shutdown or exit the touchscreen display

process by clicking to the respective buttons.
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Figure 3.37.: 5 inch Touchscreen module from Waveshare

Figure 3.38.: State machine of the touchscreen process for pages as modes

In order to make the the touchscreen display software modular, a class that is called apro-

cess has been created. By instantiating aprocess objects and appending them to the object

list aprocess_list, one can define the processes or threads that are displayed and traced.

The touchscreen display software is designed in a modular fashion so that it automatically

generates all the pages using the aprocess object list. aprocess class has the following

attributes and functions to make the process handling easier for Python-based software:

• Attributes: Process Name (apname), Process ID (apid), Running flag (aprunning),

Core Affinity (aaffinity), Command to start the process (apstartcommand), Traceable

flag (traceable), Online tracing log file (aplogfilepath), Displayed flag (displayed),

Display name (display_name), Flag to tell if it is a process or a thread (is_thread)
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Figure 3.39.: Display modes from A4MCAR Touchscreen Display

• Functions: UpdateProcessIDAndRunning() function is used to update the object pro-

cess ID and whether the process is running. UpdateProcessCoreAffinity() function
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is used to retrieve the process core affinity while the SetCoreAffinity(core_affinity)

function is used for setting the core affinity. There are also thread-specific methods

such as SetCoreAffinityOfThread(core_affinity) and UpdateThreadIDAndRunning().

The touchscreen display process has a multi-threaded design. In this design Python’s

threading library [18] is used. With Python’s threading library, one can create threads and

handle the shared memory communication between threads. The aforementioned process

and thread list, aprocess_list is protected by using the mutex implementation Lock() [18]

of Python’s threading library. The Listing 3.12 shows how locking works with Python’s thread-

ing library:

1 lock.acquire()

2 # Access to the shared variable

3 lock.release()

Listing 3.12: Using locks in Python

In the implementation of the touchscreen application, the display resulted in problems due

to non-locked access to aprocess_list variable. The concurrent write and reads to this

shared variable therefore is prevented using Lock().

The initial implementation of the touchscreen display did not involve any threads. However,

that resulted in several problems. The most crucial problem that occured by not having a

multi-threaded design was that in order to make the processes schedulable (explained in

the Section 3.3.2), the responsiveness of the touchscreen would drop significantly since

each display mode has different periods due to embedded calculations. By isolating the

calculations, touchscreen events, and utilization updates, this problem could be resolved.

The four threads that the touchscreen display component contains can be listed as follows:

• Main Thread: Responsible of solely displaying the information using shared variables

• TimingCalculation Thread: This thread is responsible of reading from all the timing

log files that are registered to the application using aprocess class, and calculating the

values such as gross execution time, slack time average, deadline misses, traceable

processes running.

• TouchscreenEvents Thread: Pygame library provides all event handling within a

signle loop. Therefore, it is unwise to handle it without a thread, in case there are

many events to be checked. For that purpose, TouchscreenEvents thread is created.

The thread is able to emit events in case there is a mouse click or a key press.

• UpdateUtil Thread: This thread is able to read from core utilization log files and parse

the information to update shared variables so that the Main Thread can show the

results.
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For the sake of informational completeness, how the schedulable Python threads are created

should be depicted. Therefore, the Listing 3.13 is given and explained as follows.

1 def Thread_Name():

2 global aprocess_list

3 global aprocess_list_len

4 global SharedVariable2

5
6 #Initialize thread and append it to the global process list

7 this_thread = aprocess.aprocess("Thread_Name", 1, "file.inc", 1, "Name", "None", 1)

8 this_thread.UpdateThreadIDAndRunning()

9 this_thread.SetCoreAffinityOfThread("0-3")

10 lock_aprocess_list.acquire()

11 aprocess_list.append(this_thread)

12 lock_aprocess_list.release()

13 aprocess_list_len = len(aprocess_list)

14
15 while True:

16 _thr_START_TIME = time.time()

17 _thr_PREV_SLACK_TIME = _thr_START_TIME - _thr_END_TIME

18 #TASK CONTENT starts here

19 # ...

20 #TASK CONTENT ends here

21 CreateTimingLog()

22 #Delay

23 if (_thr_PERIOD > _thr_EXECUTION_TIME):

24 time.sleep(_thr_PERIOD - _thr_EXECUTION_TIME)

Listing 3.13: Thread skeleton in Python

In Listing 3.13, a schedulable dummy thread skeleton is shown. Between lines 2 through 4,

the shared variables are defined. Line 7 shows instantiating an aprocess object by entering

the thread name, traceability, log file, displayability, display name, starting command, and

whether or not if it is a thread, respectively. In the line 8 and line 9, the thread ID is updated

and the core affinity of the thread is set. Lines 10 through 12 shows globally updating the

aprocess_list with the created thread by making use of mutexes. Between lines 16 and 24,

the schedulability and traceability features are implemented which was discussed in Section

3.3.2.

Since the touchscreen display process is responsible for displaying many information, li-

braries to gather up such information are used. Furthermore, the data that is gathered from

the timing logs and the core usage logs have also been used in this application. Information

that is gathered involve core usage percentages of both low-level and high-level modules,

slack times of high-level processes, core frequency of high-level module, active cores count

for the high-level module and a core mapping list from the high-level module. There is also
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ability to change the core frequency (Figure 3.39 (g)), and display the gross execution time.

The detailed information on how the timing information is extracted is explained in Section

4.

3.3.9. VNC Server

The Virtual Network Computing (VNC) is a system that allows creating and managing vir-

tual computers as well as connecting to them remotely [75]. While dealing with programming

single board computers such as the Raspberry Pi, VNC is used for viewing the single board

computer desktop remotely. During the development of A4MCAR, a third-party application

called XtightVNC is installed to both the Raspberry Pi and the development computer in or-

der to connect to each other without having to use external hardware. The VNC server that

is installed at the Raspberry Pi, XtightVNC, is run at boot time and scheduled like any other

process on the Raspberry Pi. While the server has not been manipulated during the devel-

opment, in order to investigate the parallelism efficiency, this third party application should

also be considered in order to get more accurate results. Further information regarding

parallelism findings will be given in Chapter 4 and Chapter 5.

3.4. Android Application Implementation

To control the A4MCAR remotely via communicating with the RN42 bluetooth module that

is connected to the low-level module, the A4MCAR control application is developed using

Android [76] environment. In the Figure 3.2, one can see how the developed A4MCAR

control application interacts with the entire software A4MCAR software.

As an integrated Android development environment, Android Studio [77] is used. Using

Android Studio, developers can not only design XML-based user interfaces for their ap-

plications, but also describe the behavior of their programs using the Java programming

language. Additionally, Android Studio can emulate many of the available Android devices

to help the developers debug their software flexibly.

The developed Android application interface is given in Figure 3.40. In the figure, it is shown

that the interface consists of a joystick and gear buttons that help in constructing the driving

commands that are given by the Figure in 3.24. Furthermore, using a bluetooth device list,

the A4MCAR can be paired with any compatible RN-42 bluetooth device in order to start

data communication.

For the joystick controls, a third-party Android library that is called virtual-joystick [78] is

used. Using this library, one can import the joystick mechanism into their applications. In

order to handle the data created from the joystick, an on move event handler has been
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implemented which is a callback function to react on every joystick movement. Using this

callback function, the angle and strength information that results from the joystick are trans-

formed to conform the driving command (Figure 3.24). With the help of Figure 3.41, this

data transformation can be explained easily.

Figure 3.40.: Android Application Developed for Driving A4MCAR Remotely

Figure 3.41.: Joystick angle transformation to construct driving command

Using the joystick illustration given in a Cartesian coordinate system, the angles that are

generated by the joystick library itself θ (0 to 360 degrees) have been converted to the

angles for the driving command format θnew (0 to 100). Although the transformations are

made to the values from 0 to 100, later on this is reduced to the values from 0 to 99 in order
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to get rid of the 3-digit format which is not accepted by the command parser written at the

low-level module side.

As it is clearly shown in the Figure 3.41, there are certain dead zone regions on the joystick

which are not taken into account in the transformation for the sake of the comfort of the users.

While the transformed angle θnew is constant in the dead-zone regions, a few equations have

been used in order to handle the mapping of angles in the remaining regions:

• If the angle is between 30 degrees and 150 degrees, the transformed new angle is

calculated using the following:

θnew =

(
1− θ − 30

120

)
100 (3.6)

• If the angle is between 210 degrees and 330 degrees, the transformed new angle is

calculated using the following:

θnew =

(
θ − 210

120

)
100 (3.7)

After the calculations, with the current gear setup the data is sent to the low-level module

using the bluetooth functionality of the Android application.
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Management

4.1. Introduction

After the distributed multi-core system is developed and defined, the evaluations regarding

different software distributions are performed in order to parallelize the system efficiently. For

that purpose, one should know how to manage the multi-core system. While managing the

system is quite important to maintain and properly optimize the system to its full capabilities,

one requires information regarding the system itself in order to achieve this optimization. As

an example, well-known methodologies of extracting useful information from a software is to

analyze an online and offline trace of the system.

In order to obtain information regarding a software such as number of instructions, how tasks

are scheduled, timing details regarding tasks, core frequencies, energy consumption rates,

the following techniques are most commonly used:

• Static Binary Analysis: Static binary analysis is a reverse engineering methodology

that helps in finding errors in code such as non-determinism [79]. It is essential to ana-

lyze the binaries that are created from C and C++ programs to have another approach

to traditional error finding methodologies such as testing and code inspection [79]. It

is important to keep in mind that in the static binary analysis, the program is not exe-

cuted [80]. Therefore, the information regarding execution and timing are not provided

while the instruction information could be extracted [80]. However, it should be noted

that some processor or platform specific tools can estimate the timing based on the

number of instructions and the processor information. With the static binary analysis,

the disassembly information, which is the list of all the instructions, can be found. With

the help of the binary analyzer tools, detailed information on number of function calls,

nesting, and cyclic complexity could be investigated [81].

• Profiling (Dynamic Analysis): Dynamic analysis, also called profiling, is the method-

ology of analyzing the program by considering its execution in contrast to the static
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binary analysis [80]. Dynamic analysis is often done by using tools and it is done in or-

der to get information of how a program is executed on a real or virtual processor [81].

While dynamic analysis is quite useful for identifying vulnerabilities in a runtime envi-

ronment and obtaining information such as timing of execution, it can not guarantee

the full test coverage of the source code [81]. Using dynamic binary instrumentation

(DBI) tools for e.g. the Linux platform this way, one can obtain information such as

CPU time, execution times, memory and I/O of a program [80].

• Tracing: Tracing is a methodology which is often mixed with profiling. According to

IPM [82], a trace records the chronological information of the execution of a program

or a system via logging the the execution with timestamps, whereas a profile is the

collection of performance events and timings for a program’s execution as a whole.

Therefore, it can be said that the scheduling of an Operating system could be analyzed

with the help of tracing.

The A4MCAR involves tracing features that are not only supplied by Linux tools but

also developed within the project. It can be generalized that online tracing is a type

of tracing that is done while the program is being executed using buffered logs while

offline tracing is done after the program has executed using the entire logs. Regarding

this information, it can be commented that the developed tracing features are created

for online tracing in A4MCAR while the existing tooling is used for offline tracing. The

following sections consist of the information regarding tracing developments as well as

the tooling support regarding tracing a Linux system.

• System Monitoring: Unlike static binary analysis and profiling, system monitoring

[83] is done within the entire system and it is used for obtaining useful information re-

garding the system performance as a whole. Operating systems (especially the Linux

platform) usually have system logs which could be observed via system monitoring

in order to extract useful information concerning the system performance. Concern-

ing the A4MCAR, the performance values such as core frequency and core utilization

information are extracted using system monitoring.

The low-level and high-level modules of the A4MCAR requires several information related to

APP4MC modeling. To start with, in order to model the software system of both modules, the

number of instructions, task periods, and if exists event occurrance types are needed. This

could be achieved by using static binary analysis method in the low-level module due to the

fact that the XTA tool can estimate instructions and timingfrom the static binary analysis. The

information of number of instructions and periods are obtained from the high-level module

Linux platform by using tools that perform profiling. Although using a static binary analysis

tool is possible, using a profiler tool was selected as the easier option. Secondly, the system

monitoring is needed in both modules. While the system monitoring is done using registers

in the memory for the low-level module, it is achieved by using Linux kernel tools for the
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high-level module. System monitoring for the A4MCAR is essentially needed in order to

obtain core utilization percentages, real-time CPU clock information and active core count.

Finally, the profiling and tracing of the programs of the high-level module is needed in order

to evaluate parallelization performance and visualize how processes are scheduled. The

data that is obtained from profiling and tracing involve slack time, execution times, start and

end times.

In following sections of this chapter, the aforementioned techniques for system analysis are

discussed with the emphasis of their applicability on a real distributed multi-core system that

involves elements from a low-level multi-core micro-controller and a high-level single board

computer that is running on x86/Linux platform in order to elaborate modeling, managing,

profiling, tracing of systems and the evaluation of various software distributions.

4.2. Low-Level Module Information Tracing and System
Management

4.2.1. Static Binary Analysis via XTA

The XMOS Timing Analyzer (XTA) [84] is an Eclipse-based tool that comes with the xTIME-

composer platform which is used for analyzing the timing and the execution details of the

multi-tasked software that is developed using the XMOS boards and processors [84]. The

tool is able to measure shortest and longest time required to execute a section of code by

analyzing the binary file. Thus, the code is not executed in order to be analyzed. Further-

more, it is also able to check the minimum and maximum number of instructions required to

execute a section of the code. A screenshot from the XTA tool is given in the Figure 4.1.

Once the code is written and built in the xTIMEcomposer platform, a binary file is generated

with the extension .xe. By loading this binary file using XTA, the timing analysis can be

performed. In order to load the binary to XTA, the Load Binary button (shown as 1 in the

Figure 4.1) must be pressed. Once the binary is loaded, the Disassembly window (shown

as 4) appears which shows all the runnables that are automatically detected from the binary.

Using the disassembly window, the instructions that are used for each runnable can be

denoted.

The XTA tool is also able to work with specific commands by using the XTA console (shown

as 5). Using the specific commands taken from the XTA manual [84], timing analysis could

be performed easily. In order to start timing analysis, an execution path should be defined.

The execution path can be analyzed using the following possible ways [84]:
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Figure 4.1.: XMOS Timing Analyzer (XTA) screenshot

• Via placing end points into the code using compiler directive #pragma as shown in

Listing 4.1.

1 #pragma xta endpoint "start_endpoint1"

2 data = DoSomeCalculations();

3 #pragma xta endpoint "stop_endpoint1"

Listing 4.1: Placing end points in xC code to define an execution path

The timing analysis between two endpoints can be started by entering the command

in Listing 4.2 to the XTA console:

1 analyze endpoints start_endpoint1 stop_endpoint1

Listing 4.2: Placing endpoints in XTA

• A function or a runnable with the name Function_Name can be analyzed from its start-

ing point to its return point by using the command in Listing 4.3:

1 analyze function Function_Name

Listing 4.3: Analyzing a function in XTA
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• Finally, loops can also be investigated using XTA. The way a loop is defined is either

setting a loop point from the editor or defining an endpoint inside the loop. A loop point

having an end point looppoint can be analyzed using the command in Listing 4.4 in

the XTA console:

1 analyze loop looppoint

Listing 4.4: Analyzing a loop in XTA

The entire code can be modified in the aforementioned fashion in order to do a timing analy-

sis to all of the runnables of the software system. One can set up timing constraints to make

sure every dead line is not violated [84]. Once the timing analysis starts, the selected route,

i.e. a function, a loop, or a route between two endpoints is shown in the Routes window

(shown as (2) in the Figure 4.1). The selected route is shown in blocks in another window

which is shown as (3) in Figure 4.1). It is shown that the best case execution time and the

worst case execution time of each block is estimated. As an example, for the WriteData

function, the worst case execution time is estimated to be 3.584 microseconds, whereas the

best case execution time is 432 nanoseconds. Further information that is provided by XTA

regarding timing analysis is given in the Figure 4.2. As it is shown in figure, what kind of tim-

ing paths could have been taken for the function can be visualized using the Visualizations

window. Furthermore, information such as thread cycles, number of instructions, number of

Fnops (NOP Instructions on the floating point unit), and number of paths are also shown.

Figure 4.2.: XTA Visualizations window with further information

For modeling purposes in APP4MC the number of instructions are obtained for almost every

runnable and event by using aforementioned techniques. For the events, the technique of
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defining endpoints is used, whereas for the runnables the function analysis is used. How-

ever, due to the non-determinisim in the some of the branch instructions and code sections

that are related to hardware communication, some sections in many runnables were not able

to be analyzed properly and returned the Unresolved error. In order to get rid of this error,

the following techniques are used:

• The Unresolved error occurs usually when XTA can not resolve a branch instruction

whose branch target is unknown [84]. In order to get rid of this issue, the trace of

the system should be printed and branch instruction target (branch position) should

be pointed manually. The details of how this is done is given in the XTA manual [84].

By using this technique, some of the Unresolved errors were resolved and number of

instructions of those runnables were found.

• When the technique above failed to work because of memory instructions such as

memset and infinite loops, the number of instructions are gathered by counting the

instructions from the Disassembly window. Although this technique is time consuming

and error-prone, it is assumed that the gathered information is close to the real number

of instructions. Additionally, APP4MC’s partitioning and mapping accuracy would not

change significantly if the gathered information was not exact.

In Section 5, the gathered information along with its implications are further discussed.

4.2.2. Distribution of Tasks to Cores

In a properly utilized parallel system, gathered information is used in order to find which

software distribution is most efficient. Here, the software distribution refers to the mapping

stage, which is the distribution of the tasks that result from APP4MC’s partitioning process.

Within the xTIMEcomposer platform, the task mapping is done easily with the capabilities of

the xC programming language. Since xCORE provides a multi-core platform, using the cores

for different tasks can be achieved by using simple statements. Although this is introduced

in Section 3, some of the information is summarized for completeness purposes. In XMOS,

placement of a function into a core is done by using the par statement. In the main block

of a software, the par statement can be used in order to create several tasks in parallel.

Additionally, using global interface variables, one can handle the inter-task communication

between two parellel tasks.

As opposed in Listing 3.2, a simple example in Listing 4.5 help one to get a better impression

of how this works using xC:
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1 int main(void)

2 {

3 interface my_interface i1;

4 par

5 {

6 on tile[0].core[2] : Task1 (i1);

7 on tile[1].core[3] : Task2 (i2);

8 }

9 }

Listing 4.5: Interfacing in XMOS

The given code is a basic example of using xC functionality to do a task mapping. The

parallel block in the code is given as the Lines 4 through 8. It is shown that the Task1

is pinned to the core 2 of tile 0, whereas the Task2 is pinned to the core 3 of the tile 1.

Furthermore, a global interface of type my_interface having the name i1 is declared in

Line 3. This interface handles the communication between the tasks Task1 and Task2.

As mentioned, the hardware realizes the interface by using the xCONNECT switches to

construct a bridge between the tiles and cores. Additionally, it should be noted that unlike the

Raspberry Pi, the tasks are distributed to cores during the reconfiguration in a xC program,

i.e where a Task is located can not be changed during run-time due to the nature of xCORE

and due to the fact that hardware availability differs from tile to tile [40].

By using the aforementioned technique, all the low-level module tasks are distributed to

cores at compile-time (or build-time).

4.2.3. System Monitoring in xCORE

How cores of the system is monitored in xCORE are discussed in the Chapter 3. For the

sake of completeness, this subsection is dedicated to summarizing what is discussed in the

Section 3.2.7. System monitoring is done by polling a system register and finding out if that

core is busy or idle at that moment. Referring back to the Listing 3.7, one can understand

this process better.

Besides the implemented core monitoring task, XMOS features several more means to mon-

itor the system. First, the system can be monitored at build-time using the Resource Usage

tab at the XTA tool Binary window. In Figure 4.3, it is shown that the information regard-

ing stack memory, program memory, free memory, cores, timers, and channels could be

observed in one window using XTA Binary. Another way to monitor the system is provided

by a function called debug_printf. As the name of the function suggests, it is essentially

a printf function to observe variables. However, debug_printf is a function that does not
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interrupt inter-process communication and that does not block cores while printing so that

developers can monitor without having to worry about much overhead [40].

Figure 4.3.: XTA Binary Resource Usage

Using the debug_printf function and xC-specific tools, a function is created that helps to

find out which function refers to which core. The reason this information is important is

because the core IDs that are referred with the par statements are not the same IDs of the

core usage implemention. The same issue holds true for the tile IDs as well. By using the

code in Listing 4.6, this information can be monitored at run-time:

1 int PrintCoreAndTileInformation(char * Function_Name)

2 {

3 debug_printf("Starting %s task on core ID %d on tile %x\n", Function_Name,

get_logical_core_id(), get_local_tile_id());

4 return 1;

5 }

Listing 4.6: Printing core and tile information

Here, the get_logical_core_id() is the function to get the real core ID from system regis-

ters, whereas the get_local_tile_id() function returns the real tile ID. This way, it is made

sure which task uses how many percentage of the core. Once every task is manipulated

so that they use this function while the core monitoring is running, system monitoring can

be done easily by observing the Console. An example output of the Console from the final

version of the low-level module software is given in Figure 4.4. It is shown that the core IDs

for every task is given and then the core utilization percentages are listed for cores 0 through

7 for each tile.
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Figure 4.4.: System monitoring implemented on xCORE

4.2.4. Discovering Energy Consumption Features

One of the most important optimization goals include reducing the energy consumption.

To reduce the energy consumption one should have a properly utilized software which is

achieved through balancing the CPU load through all the cores of the system. In order

to understand this, Power Consumption Application Manual for XS1-L devices [85] can be

studied further.

There are two types of power consumption described regarding a processing unit. Static

power consumption describes a chip’s power consumption that is caused by the leakage

current as the chip is heating [9]. Therefore, since the leakage current could not be controlled

by a user directly, dynamic power consumption, which is the power consumption that is

resulted from actual computations, is the concern of this thesis’ research. The dynamic

power consumption of a chip is described by the following equation [86]:

P dynamic = αCLV DD
2fclk (4.1)

We can see from the equation that the power depends on a switching probability α, a chip

voltage V DD, a clock frequency fclk and a collective switching capacitance CL. It is stated

in the [9] that since V DD linearly depends on the clock frequency fclk, a cubic relationship

between power consumption and clock frequency can be observed. The linear relation-

ship between the current IDD and the frequency is also depicted in Figure 4.5, showing the

performance values for a XS1-L device of XMOS xCORE-200 eXplorerKIT [85].
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Figure 4.5.: XS-1 Power Graph Related to Base Current for an xCORE Core

In Figure 4.5, the base power consumption of one xCORE running an instruction sequence

is given with respect to the clock frequency. One can see that the internal base current that

is related to the operation of xCORE is directly proportional to the clock frequency of the

xCORE core. Since the current is directly proportional to the power, as seen by the equa-

tion i.e. P = IDDV DD, it can be concluded that load balancing is one of the most important

things to take care of to get a lower frequency thus current in the core, thus reducing the

power consumption. It is important to add at this point that power consumption and energy

consumption are directly proportional if the system is not fully loaded. In other words, de-

creasing the clock frequency alone is useful to achieve reduced energy consumption in a

system in which the load is balanced and no deadlines are missed [86]. Using the provided

internal registers, the xCORE core and tile frequencies can be reduced according to the

manual [85].

It is important to keep in mind that reducing the clock speed is not the only way to reduce

the power consumption. If the dynamic switching power is considered rather than the base

power consumption, the factors such as operating frequency, amount of communication,

and the data itself are all big causes of power consumption [85]. Therefore, two techniques

with which power and energy is reduced can be defined. The first technique encapsulates

the aforementioned techniques, i.e decreasing the frequency of a chip dynamically by using

DFS (Dynamic Frequency Scaling) and decreasing the frequency and operating voltage

together dynamically (Dynamic Voltage and Frequency Scaling). The second technique

involves shutting down the chip sections which are not used dynamically.

An important energy related feature that comes with XS-1 devices is the AEC (Active Energy
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Consumption) mode [85] which can be an example of the mixture of both of the aforemen-

tioned techniques. When this mode is turned on and AEC mode clock frequency is set to a

desired value, xCORE device lowers the clock frequency of the AEC-enabled cores to the

desired AEC mode clock frequency when the core is paused or waiting for an input [85]. This

could be slightly related to DVFS (Dynamic Voltage and Frequency Scaling) [87] which is a

processors ability to dynamically scale its frequency and operating voltage depending on the

load. DVFS is common for operating systems such as Linux OS and it will be discussed in

the Section 4.3.

4.3. High-Level Module Information Tracing and System
Management

4.3.1. Obtaining Information

4.3.1.1. Binary Analysis of Instructions

In order to obtain the number of instructions of the created processes on the high-level side

for modeling purposes, a couple of options are investigated. Most of the techniques are

used for the A4MCAR in order to model the system using APP4MC.

As a static binary analysis solution, objdump [88] module of Linux provides disassembly

information of C-based libraries and executables. After the compilation of a C/C++ program,

the GNU C Compiler (GCC) provides an object file which contains the binary data for the

program. Using the objdump module, C/C++ programs, functions, libraries can be analyzed

easily. Objdump provides not only the disassembled instruction list but also information

such as symbol tables and debug information. In order to record the instructions of a C/C++

application, one of the commands in Listing 4.7 are used.

1 objdump MyObject.o -D > MyObjectDump.txt

2 objdump MyObject.o -S > MyObjectDump.txt

Listing 4.7: Using objdump

These commands provide disassembled instructions from MyObject.o and records them

into a file called MyObjectDump.txt. The command with the -D option provides the complete

disassembly information for each function whereas the command with the -S option provides

source code along with instructions.

Although using objdump is useful for C/C++ applications, it does not provide any means to

investigate Python-based processes. To get the instruction information for Python-based
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processes Python library dis [89] provides a couple of functions. These functions must be

used in the Python program itself in order to print out or record the instruction information.

A simple example of using dis in a Linux shell is given in Listing 4.8.

1 python -m dis PythonApp.py

Listing 4.8: Using dis

This command will give bytecodes of each code line, hence giving instructions for every line

of code. One can also disassemble functions by using the Python code in Listing 4.9.

1 import dis

2 dis.dis(FunctionName)

Listing 4.9: Using dis in Python shell

Perf [90] [91] is a well-known lightweight system performance counter and profiler tool for

Linux. Using perf, one can obtain event and instruction counts, record events, run bench-

marks, and analyze processes [90]. For the A4MCAR, the Perf profiler tool has been used

for many purposes that include process instruction analysis, system-wide scheduling trac-

ing, and trace data conversion. Perf can perform dynamic analysis (profiling) in order to

obtain the number of instructions for processes and runnables using Linux shell command

shown in the Listing 4.10.

1 sudo perf stat -e instructions:u -p <pid>

Listing 4.10: Using perf stat

It must be noted that the number of instructions are obtained dynamically so the process

should either be exited or should have a finite number of iterations for the result to be accu-

rate. It must also be made sure that since the command is used for counting the number of

instructions of a running process, the command should be executed right after the process

starts. In the listing, command counts the instructions only in user mode to avoid including

any system overhead and the <pid> is the Process ID of the process according to the Linux

kernel. How a process ID of a process is obtained and what it means is discussed in the

next section. For the analysis of high-level applications in A4MCAR, the following variation

of the perf stat command is used which is able to determine the instruction count of a run-

ning process or thread with a timeout. If the timeout is set to the period of the schedulable

process or thread, one can obtain rough idea about the granularity of the process or thread.

In Listing 4.11, <timeout> is the period in seconds.
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1 sudo perf stat -e instructions:u -p <pid> -- sleep <timeout>

Listing 4.11: Using perf stat with timeout

For threads, the aforementioned method is error-prone, therefore using �per-thread switch

is more reliable when profiling threads of a process as shown in Listing 4.12.

1 sudo perf stat --per-thread -e instructions:u -p <pid> -I <timeout>

Listing 4.12: Using perf stat with per thread switch

4.3.1.2. Process Management and Monitoring

Managing and monitoring processes and threads of a the Linux system are crucial prelim-

inaries that should be discussed in order to work with A4MCAR’s high-level module using

Linux platform. One can list the process management and monitoring issues as follows:

• Listing Processes and Threads: By using the top command, processes and threads

that are running can be listed. A couple of example commands and their outputs are

explained below [92]. By using the command in Listing 4.13, processes of the entire

system could be monitored.

1 top

Listing 4.13: Top command in Linux shell

In, 4.6 each process are listed in descending order according to their CPU usages.

Processes could be identified by looking at their commands. Information such as

owned user (USER), process ID (PID), how much virtual memory are accessed (VIRT),

physical memory usage (RES and MEM), how much virtual memory is shared (SHR),

cpu usage (CPU) can be monitored in this window. By using the command in Listing

4.14, one could also see the threads of a process given its process ID.

1 top -H -p <pid>

Listing 4.14: Using top to monitor threads

Another way to manage processes is done by using ps command. This command

not only allows to list processes or threads but also is used to kill processes. Simi-

larly to top command, ps command could be used like the Listing 4.15 in order to list

processes and threads.
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Figure 4.6.: Top command output

1 ps -aux #All processes

2 ps -T -p <pid> #Threads of a process

3 ps H -p <pid> -o 'pid tid cmd comm' #Threads of a process including their names

Listing 4.15: Using ps in Linux shell

• Obtaining Process ID of a Process: Identifying the process ID or a process is crucial

in order to work with processes in Linux. By using the command in Listing 4.16, the

PID of a process can be obtained by the process name.

1 pgrep -f <process_name> -n

Listing 4.16: Using pgrep

Using this knowledge, a Linux bash script has been created that monitors a process by

finding the process ID from the process name and then using perf profiler. The script

is given in Listing 4.17.
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1 #!/bin/bash

2 args=("$@")

3 process_name=${args[0]}

4 pid=$(pgrep -f $process_name -n ) #Newest result

5 sudo perf stat -p $pid

Listing 4.17: Created Bash script to dynamically profile applications (AppMonitor.sh)

By calling bash AppMonitor.sh <process_name> from the Linux shell, this script is

used to monitor applications using perf. In the script, thecommand argument is re-

trieved (Line 2 and Line 3), process ID is obtained (Line 4) and then perf stat is used

(Line 5).

1 def CheckIfProcessRunning(process_name):

2 # Returns process id, or 0 if process not running

3 try:

4 x = subprocess.check_output(['pgrep','-f',process_name,'-n'])

5 except Exception as inst:

6 x = 0

7 return x

Listing 4.18: Function to obtain process ID from Python environment

Since the touchscreen display process is responsible of doing all the online timing

calculations, a function has been implemented which returns the PID of a process if

the process is running (Listing 4.18). In the following, it is seen that using subprocess

module of Python, one can check the output of a Linux shell command from Python

environment (Line 4 of Listing 4.18).

• Killing a Process: Killing a process is handled through a simple Linux shell command

that is given in Listing 4.19.

1 sudo kill -9 <pid>

Listing 4.19: Killing processes from Linux shell

Using the same manner that is explained by the Listing 4.17, a Linux shell script that is

called KillProcess.sh has been created which is able to kill running process by their

names.

• Monitoring Process Details using The inux kernel folders: Linux kernel provides

a virtual filesystem that is located under /proc directory that contain runtime system

information for system, device, connectivity, and process monitoring [93]. Regard-

ing process monitoring, using the process ID as the folder name and simply viewing

102



4. Information Tracing and System Management

the files that are located under /proc/<pid>/, much information such as process sta-

tus (observed in Figure 3.9), memory maps, libraries and executables, executed cpu,

scheduling information can be monitored. A few examples are given in the Listing 4.20

with their explanations [93].

1 cat /proc/<pid>/cmdline #Command line arguments.

2 cat /proc/<pid>/cpu #Current and last cpu in which it was executed.

3 cat /proc/<pid>/cwd #Link to the current working directory.

4 cat /proc/<pid>/exe #Link to the executable of this process.

5 cat /proc/<pid>/maps #Memory maps to executables and library files.

6 cat /proc/<pid>/mem #Memory held by this process.

7 cat /proc/<pid>/root #Link to the root directory of this process.

8 cat /proc/<pid>/statm #Process memory status information.

9 cat /proc/<pid>/status #Process status in human readable form.

Listing 4.20: Kernel virtual filesystem /proc information retrieval examples [93]

4.3.1.3. System Monitoring for Linux Platform

As mentioned, for system monitoring investigating the /proc folder is also widely used. The

information that is stored in the virtual filesystem involve the following [93]:

• Advanced power management info

• Information about the processor, such as its type, make, model, and performance

• List of device drivers configured into the currently running kernel

• Filesystems configured/supported into/by the kernel

• Which interrupts are in use, and how many of each there have been

• Memory map

• Masks for irq (interrupt request line) to cpu affinity

• Kernel locks

• Information about memory usage, both physical and swap

• Mounted filesystems

• Status information about network protocols

Although regarding the Linux system administration those information are useful, a more

easy way to obtain certain information can be done through using third party modules. For

the A4MCAR, psutil Python module has been used in order to monitor system information
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such as number of active cores running, core frequencies and CPU utilization of each core.

Using the function given in Listing 4.21, the core frequencies are extracted in MHz.

1 str(psutil.cpu_freq()).split(',')[0].split('=')[1]

Listing 4.21: Using psutil to get CPU frequencies

Similarly, the psutil.cpu_count() function can be used to extract the number of active

cores and the psutil.cpu_percent() function can be used to extract the core utilization

percentages in a given time period [67].

4.3.1.4. Tracing the System to Obtain Scheduling Information

To evaluate performance indicators and observe load balancing, tracing the high-level mod-

ule processes is crucial for the A4MCAR. By recording a system trace and using scheduling

visualization tools in Linux, one can see how processes and threads are distributed amongst

the existing cores. For that purpose, tracing and visualization options are investigated as fol-

lows:

• Tracing via perf and viewing the trace: In order to trace the system using perf

profiler, perf’s record command is used [91]. As an example, the system trace could

be obtained for 15 seconds by entering the command in Listing 4.22 into the Linux

shell.

1 sudo perf sched record -- sleep 15

Listing 4.22: Using perf sched record

Once the tracing is done, the system trace is recorded to a file called perf.data. This

trace file uses the perf tracing format which is not a common format. Therefore, it is not

recognized by many of the trace visualization software. In order to visualize a basic

system trace using perf.data file, the command given in Listing 4.23 could be used

which saves the full trace in a text file called fulldump.txt.

1 sudo perf sched script > fulldump.txt

Listing 4.23: Using perf sched script to get full dump of scheduling in Linux

First lines of the fulldump.txt should be analyzed in order to understand what infor-

mation can be inferred from the trace. Referring to the code given in the Listing 4.24,

each line represents a kernel event. If a task is being started to execute on a core

that event is referred to as a sched_switch event, whereas if a task that was in the
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sleeping state is being executed again this is referred to as the sched_wakeup event.

Another information regarding trace events involve process name (comm), process ID

(pid), target core (target_cpu) and time at which the event occurred.

1 perf 16984 [005] 991962.879960: sched:sched_stat_runtime: comm=perf pid=16984 runtime

=3901506 [ns] vruntime=165...

2 perf 16984 [005] 991962.879966: sched:sched_wakeup: comm=perf pid=16999 prio=120

target_cpu=005

3 perf 16984 [005] 991962.879971: sched:sched_switch: prev_comm=perf prev_pid=16984

prev_prio=120 prev_stat...

4 perf 16999 [005] 991962.880058: sched:sched_stat_runtime: comm=perf pid=16999 runtime

=98309 [ns] vruntime=16405...

5 ....

Listing 4.24: Perf sched script command output [91]

1 *A0 993552.887633 secs A0 => perf:26596

2 *. A0 993552.887781 secs . => swapper:0

3 . *B0 993552.887843 secs B0 => migration/5:39

4 . *. 993552.887858 secs

5 . . *A0 993552.887861 secs

6 . *C0 A0 993552.887903 secs C0 => bash:26622

7 . *. A0 993552.888020 secs

8 . *D0 . A0 993552.888074 secs D0 => rcu_sched:7

9 . *. . A0 993552.888082 secs

10 ....

Listing 4.25: Perf sched map command output [91]

Since the perf sched script output might be messy for a system trace, one could

be more interested in seeing a system trace in a more abstract form. In that regards,

obtaining a cpu mapping view of the trace could help. In order to obtain a cpu mapping

view, the command in Listing 4.26 is used from the Linux shell.

1 sudo perf sched map

Listing 4.26: Obtaining CPU mapping view using perf

The output of this command can be seen in Listing 4.25. In the code, it is shown that

each column represents a core whereas vertical axis is the time axis. In other words,

each time an event occurs, a new line is added and the task is placed to a column

depending on which core it is running. It should be noted that star symbol near a task

is used to indicate sched_switch events. The timing information, the process name

and process ID are also given in this view.
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Concerning the example in Listing 4.25, if the cores had names 0 through 3 depend-

ing on their column index, it must be seen that the core 0 (first column) is not doing

anything whereas most of the load is located on on cores 2 and 3. It must also seen

that the process A0 (hence, perf) had switched from core 2 to core 3 at some point in

time.

• Trace-Cmd trace and visualization via kernelshark: Trace-cmd [94] is yet another

tool that records system trace. Trace-cmd trace is generated into a file trace.dat by

using the command given in Listing 4.27.

1 sudo trace-cmd record -e sched

Listing 4.27: Recording a system trace using trace-cmd

The trace that is generated from trace-cmd tool could be observed via a visualiza-

tion tool called kernelshark. By simplying calling kernelshark from the directory that

trace.dat is located, one can launch kernelshark to observe the system trace. An

example of kernelshark is shown in the Figure 4.7. Although kernelshark along with

Figure 4.7.: Kernelshark running on Linux (Raspbian) OS
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trace-cmd are useful tools that show a CPU graph along with processes, the visualiza-

tion does not provide information regarding CPU utilization details and communication.

For that purpose, TraceCompass tool will be used which will explained in the following

paragraph.

• Perf and Babeltrace CTF tracing and visualization via TraceCompass: Eclipse

TraceCompass [95] is an Eclipse-based open-source platform that is used for providing

views, graphs and metrics for many type of logs and traces [95] The graphical user

interface of the Eclipse TraceCompass is shown in Figure 4.8. Since the information

that is provided by Eclipse TraceCompass is more user-friendly and more detailed

than the other visualization options that are discussed, for the A4MCAR the Eclipse

TraceCompass has been used for investigating the high-level module system trace.

LTTng [96] is an open-source tracing framework that is provided for the Linux platform

which is quite often used with Eclipse TraceCompass due to its format compatibility, i.e.

both LTTng and TraceCompass can handle the standard tracing format, CTF (Common

Trace Format) well. However, since LTTng requires system tracepoints to be designed

in the software development stage, in A4MCAR due to its ease of implementation Perf

is used for tracing. Although TraceCompass accepts many trace formats, it can not

read directly from perf format (perf.data). Therefore, the perf trace format should be

converted to CTF in order to be analyzed using the Eclipse TraceCompass.

In order to convert the perf format, one has to build a new version of perf from a Linux

kernel module [97] with tracing options enabled and also with a tracing library that is

called LibBabelTrace. The detailed information regarding this building process could

be seen at [98]. Once the perf is built and installed with babeltrace, one can use the

commands in Listing 4.28 to record a trace and then convert it to CTF data format.

1 sudo perf sched record -e 'sched:*,raw_syscalls:*' -- sleep 15

2 sudo LD_LIBRARY_PATH=/opt/libbabeltrace/lib perf data convert --to-ctf=./ctf

Listing 4.28: Conversion to Common Trace Format

Once the trace which is in CTF format is generated, it can be imported into Eclipse

TraceCompass. An example trace imported into Eclipse TraceCompass platform is

given in the Figure 4.8. Using the figure, the main windows in the Eclipse TraceCom-

pass can be discussed. TraceCompass enables users to look at their system using

several views such as call graphs, threads, context switches, cpu usage, critical path,

I/O, control flow, and resources which can be seen as (1) in the figure. Control flow win-

dow (2) shows each process state with respect to time including the transitions along

all the processes. System-wide CPU usage and individual processes’ CPU usages

are shown in the CPU Usage window which is shown as (3) in the figure. Therefore,
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if the system has 4 cores, the CPU usage of up to 400 percent could be observed.

Resources window (shown as (4)) depicts how processes are distributed amongst the

existing cores with respect to time. Therefore, the load balancing could be roughly

observed from this view by simply looking at each of the cores. Moreover, using the

Resources window, one can measure and estimate the timing properties of the sched-

ule of the system. Finally, the trace event list (shown as (5)) can be used to see exact

events that occurred in a specific time by selecting a time frame from other windows.

Figure 4.8.: Eclipse TraceCompass running on Windows

To ease the process of having to trace using perf, convert the trace, and take a look at

the process ID list to interpret the trace, a Linux shell (bash) script has been created

in order to get necessary outputs from tracing processes and threads automatically.

Listing 4.29 shows the content of the script. It is seen in the script that command line

arguments are taken (Lines 1 to 4) to make the process more modular. The Lines 11

to 20 are dedicated to executing the commands that are discussed above by making

use of the command line arguments. By stating the trace name, tracing period, and

perf module installation location, one can use this script to generate traces easier.
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1 args=("$@")

2 trace_name=${args[0]}

3 seconds=${args[1]}

4 perf_directory=${args[2]}

5
6 if [ "$#" -ne 3 ]; then

7 echo "Entered arguments seem to be incorrect"

8 echo "Right usage: sudo TraceLinuxProcesses.sh <trace_name> <period> <path_to_perf>"

9 echo "e.g. sudo TraceLinuxProcesses.sh APP4MC_Trace 15 /home/pi/linux/tools/perf"

10 else

11 echo "### Creating directory.."

12 sudo mkdir out_$trace_name/

13 echo "### Writing out process names.."

14 ps -aux >> out_$trace_name/Processes_List.txt

15 echo "### Tracing with perf for $seconds seconds.."

16 sudo $perf_directory/./perf sched record -o out_$trace_name/perf.data -- sleep

$seconds

17 echo "### Converting to data to CTF (Common Tracing Format).."

18 sudo LD_LIBRARY_PATH=/opt/libbabeltrace/lib $perf_directory/./perf data convert -i

out_$trace_name/perf.data --to-ctf=./ctf

19 sudo tar -czvf out_$trace_name/trace.tar.gz ctf/

20 sudo rm -rf ctf/

21
22 echo "### Process IDs are written to out_$trace_name/Processes_List.txt"

23 echo "### Trace in Perf format is written to out_$trace_name/perf.data"

24 echo "### Trace in CTF format is written to out_$trace_name/trace.tar.gz"

25 echo "### Exiting.."

26 fi

Listing 4.29: Script to generate traces automatically

At this point, it is really important for a developer to let the Linux Kernel and by exten-

sion the TraceCompass identify the processes and threads. The way this is achieved

is by manipulating the name of the processes and threads that are visible to Linux ker-

nel, which is known as command. In this work, this is researched for both C++ (POSIX

threads) and Python (threading) processes and threads.

For POSIX-thread based C/C++ programs, command is the executable name for a pro-

cess when executed as ./cppprogram. However to set the command for the threads of

a POSIX-thread based program, pthread_setname_np function should be used.

For Python’s threading-based programs, both process and thread names should be

made visible by specifying command, or either the TraceCompass will recognize the

processes and threads as just python. To set the command for a Python executable

the first line of the Python program should be set to #!/usr/bin/python as opposed

to #!/usr/bin/env python to make the script executable. After that, if the process is
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executed using its name ./pyprogram, the TraceCompass will recognize the process

name. Moreover for threads inside a Python program, prctl module can be used to set

the command. The function prctl.set_name is useful in this regard.

With all processes and threads named and traced, TraceCompass will visualize the

scheduling as shown in Figure 4.9.

Figure 4.9.: TraceCompass visualization of processes and threads

4.3.2. Process and Thread Mapping

After software evaluation, processes and threads should be pinned to cores properly. To

place the processes and threads to cores, the taskset module of the Linux platform is used.

Taskset module [99] is used to set or retrieve the CPU affinity of a running process given

its process ID. CPU affinity is a scheduler property that pins a process to a given set of

CPUs on the system. Therefore, the process will not run on any other CPUs after an affinity

is set to that process [99]. As described in [99], the Linux scheduler also supports natural

CPU affinity: the scheduler attempts to migrate processes along different CPUs as long

as it is practical for performance reasons [99]. Therefore, in A4MCAR, by forcing a specific

CPU affinity, we investigate if a better distribution could be accomplished than the scheduling

automatically done by Linux. To place a process to a core given its process ID, the command

given in Listing 4.30 is used.

1 #Place the process on a specific core.

2 sudo taskset -pc <coreaffinity> <pid>

Listing 4.30: Using taskset

As an example, for a 4-core system such as Raspberry Pi 3, core affinity can be values such

as 0, 1, 2, 3, 0-1, 0-2, 0-3, 2-3. This example shows that core affinity not necessarily has to

be selected as only one core and it can be selected as a range of cores for a process to be

distributed. The Listing 4.31 depicts how a process is pinned to a core using its name.
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1 #!/bin/bash

2 args=("$@")

3 process_name=${args[0]}

4 core=${args[1]} #Affinity, 0-3 for raspberry pi, could be a range too.

5 pid=$(pgrep -f $process_name -n ) #Newest result

6 sudo taskset -pc $core $pid && #Place the task on a specific core.

7 echo "Process $process_name with PID=$pid has been placed on core $core"

Listing 4.31: CorePlacer.sh script to pin a process to a core using its name

To manage the distribution process for every process might be time consuming. In order to

overcome this issue, a file format has been designed which is then read by the main process-

ing task (Touchscreen display process). The touchscreen process, when the distribution is

selected, reads from this file format coredef_list.a4p and makes core placements accord-

ingly. An example coredef_list.a4p is shown in Listing 4.32. It is shown in the listing that

task names and cores are listed by each line.

1 [COREDEF_LIST_APP4MC]

2 Assign Task Xtightvnc To Core 0

3 Assign Task mjpg_streamer To Core 0

4 Assign Task touchscreen_display To Core 0

5 Assign Task ethernet_client To Core 0

6 Assign Task core_recorder To Core 0

7 Assign Task dummy_load25_1 To Core 1

8 Assign Task dummy_load25_2 To Core 2

9 Assign Task dummy_load25_3 To Core 1

10 Assign Task dummy_load25_4 To Core 2

11 Assign Task dummy_load25_5 To Core 2

12 Assign Task dummy_load100 To Core 3

13 Assign Task apache2 To Core 1

14 Assign Thread Thread_UpdateCoreUsageInfo To Core 2

15 Assign Thread Thread_TimingCalculation To Core 3

16 Assign Thread Thread_TouchscreenEvents To Core 0

Listing 4.32: File format that contains overall process pinning information

Reading the file and making the changes required is achieved by using the function given

with Listing 4.33. In this listing, the file is opened (Line 7), each line is parsed (Lines 8

through 14), then the allocation is done by searching for the item in the global aprocess_list

(Line 15 through 24) and executing a taskset command with arguments as name of the pro-

cess and core if the item is found in the process and thread list aprocess_list. Considering

Figure 3.25, one can better understand how this procedure is interfaced amongst other pro-

cesses in the high-level module. One should also notice that in the line 25, core affinities of

processes are updated.
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1 def APP4MCDistributionActions():

2 global aprocess_list

3 global aprocess_list_len

4 process_names = []

5 process_affinities = []

6 try:

7 with open('../../logs/core_mapping/coredef_list.a4p','rb') as coredef_list:

8 for line in coredef_list:

9 words = line.strip('\n').split(' ')

10 if (len(words)>3):

11 process_names.append(words[2].strip('\n'))

12 process_affinities.append(words[5].strip('\n'))

13 except Exception as inst:

14 print inst

15 lock_aprocess_list.acquire()

16 for i in range(0, aprocess_list_len):

17 for k in range(0, len(process_names)):

18 if (aprocess_list[i].apname == process_names[k] and aprocess_list[i].aprunning == 1):

19 if (aprocess_list[i].apid != "NaN" and aprocess_list[i].apid != 0):

20 try:

21 os.system("sudo taskset -pc "+str(process_affinities[k])+" "+str(

aprocess_list[i].apid))

22 except Exception as inst:

23 print inst

24 lock_aprocess_list.release()

25 UpdateCoreAffinityOfProcesses()

Listing 4.33: Reading coredef_list.a4p and pinning tasks with Python

4.3.3. Investigating Energy Consumption Features

One of the biggest advantages of achieving a better core utilization is to invoke energy

saving features of processors by running CPU at lower clock speeds and lower voltages. As

mentioned before, computers that run on Linux platform provide a feature that is called DVFS

(Dynamic Voltage and Frequency Scaling) [87] which is a processor’s ability to dynamically

scale its frequency and operating voltage depending on the load. DVFS can affect hardware

peripheral chips apart from the processor. Figure 4.10 [86] depicts how DVFS can improve

the energy consumption in a system.

For equation 4.1, considering a fixed chip operating voltage V DD, the power is directly pro-

portional to the CPU operation frequency. For example, a processor that is running on

500MHz will draw less current than the same running on 200MHz. However, using a lesser

frequency is not the only way to get a lesser power consumption. One can also reduce the

operating voltage V DD of a chip to reduce power, provided that the V DD is greater or equal
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Figure 4.10.: How DVFS reduces energy consumption explained [86]

to the minimum working voltage of that particular chip [86]. It should be noted that that clock

frequency should also be reduced in a system with a reduced operating voltage V DD for the

system to function correctly [100]. The Figure 4.10 depicts that by decreasing frequency

and operating voltage at the same time (DVFS), power consumption is reduced a lot more

than it is in the frequency scaling.

In Linux, CPUFreq [101] is provided as a module that is responsible for handling dynamic

frequency scaling. CPUFreq governors which are responsible for deciding, what frequency

should be used in a system, manipulate the CPUFreq driver to switch the policy of the

CPU depending on the system load [101]. In A4MCAR, CPUFreq governor of the high-level

module is changed in order to achieve less power consumption. Raspberry Pi 3 supports

two frequencies that can be used within CPUFreq governors: 600MHz and 1.2GHz. The

available governors and their functions are listed below [102]:

• performance - sets the frequency statically to the highest available CPU frequency (in

Raspberry Pi 3, this is 1.2GHz)

• powersave - sets the frequency statically to the lowest available CPU frequency (in

Raspberry Pi 3, this is 600MHz)

• userspace - set the frequency from a userspace program. A userspace program can

determine customized policies and frequencies to be used. For detailed information

on userspace governor, [102] can be read.

• ondemand - adjust based on utilization

113



4. Information Tracing and System Management

• conservative - adjust based on utilization but be a bit more conservative by adjusting

gradually

The CPUFreq governor of a Linux system can be changed at any given moment by using

the cpufreq-utils command. The Linux shell commands in Listing 4.34 show installation

of cpufreq-utils (Line 1), listing information (Line 2), and current governor selection (Line

3), respectively.

1 sudo apt-get install cpufrequtils

2 cpufreq-info

3 cpufreq-set -g <governor> #<governor> could be either of the governors that are listed.

Listing 4.34: Changing CPU governer from Linux shell

4.3.4. Online Timing Analysis Features for the A4MCAR

As explained in the Section 3.3.2 in detail, every created application in A4MCAR’s high-level

module are built on a template that is able to log timing information. The timing logs are read

in the Touchscreen display process, which is referred as the main processing task in the high

level module. The role of main processing task in the online timing analysis is depicted in the

Figure 4.11. The main processing task is responsible to calculate performance indicators

such as average slack time ST avg and overall deadline misses percentage DLM using the

timing values from other processes in seconds such as execution time ET , slack time ST ,

deadline DL and period PER (Recall from Section 2.7). The ain processing task can also

read from core usage logs and inform users about the low-level module core utilization per-

centages LU0-15 and high-level module core utilization percentages HU0-3. Furthermore,

the number of active cores Ncores, number of active and traceable processes Nprocess, num-

ber of missed deadlines Nmissed and clock frequency fCPU are also shown by reading the

respective logs.

Subsection 3.3.2 explains the calculation of ET , ST , and determination of DL and PER.

Users are able to observe ST avg and DLM on the touchscreen display as seen in Figure

3.39 (g). The calculation of the information that is presented to the user ST avg and DLM

are given as follows:

• ST avg in seconds is calculated simply by using the following equation:

ST avg =
1

Nprocess

Nprocess∑
n=0

ST n (4.2)

• To find DLM , first, ET and DL of each process are compared. If ET is larger than

DL, that process is said to have missed its deadline. A deadline flag DF is defined
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Figure 4.11.: Online Timing Analysis explained in A4MCAR

which is 1 if the deadline is missed for a process, and 0 if the deadline is not missed.

By using the sum of every deadline flag DF , the DLM is calculated as follows:

DLM =
100

Nprocess

Nprocess∑
n=0

DF n (4.3)

In the following chapter, the evaluation of distributions and results is given and explained.
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5.1. System Limitations and Factors that Affect the Results

In this chapter, system modeling with APP4MC and evaluations of mapping outcomes are

discussed. The A4MCAR, like every embedded system, has its limitations related to both

hardware and software. APP4MC’ primary objective is serving industry-related applications,

supported with industry-related tools with precise tracing and distribution interfaces. How-

ever, applying APP4MC solutions for custom open-source and commercial tools requires

some effort regarding developing tool support for dealing with the issues such as model-

ing, tracing, and distribution. Furthermore, overheads and limitations are present for custom

open-source platforms and tools. The following list explains the limitations that affect the

demonstrative purposes of the project and the results of the software distribution:

• Model limitations and overheads in the system: Although the created AMALTHEA

model contains most of the information related to runnables, it does not contain in-

formation such as OS scheduling, reading/writing to/from files, kernel overheads, and

tracing overheads. Furthermore, in order to ease the modeling process, some trivial

shared resources and runnables that mainly belong to Linux system’s internal opera-

tion are not modeled. Therefore, created AMALTHEA model is not 100% precise. This

situation will create non-deterministic error in the outcomes that should be noted.

• Sporadic activations: Since some tasks especially in the low-level module are acti-

vated randomly rather than periodically, the system and the model has non-deterministic

behavior to some degree. That is one of the limitations which constrain the output from

APP4MC.

• Limitations of perf the profiler: The perf profiler uses dynamic analysis to get the

granularity of tasks [91]. Due to the profiler overhead, the resulting granularities that

are observed with the help of the perf profiler might contain errors. However, it is

assumed in this work that granularities of tasks being relative would not produce errors

in the partitioning.
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• Limitations of process-based distribution: Since in this work not very fine-grained

processes are distributed, the load balancing by 100% would not be possible. As an

example, image processing process contains a significantly higher instruction size than

any of the other processes. Therefore, the goal is to achieve the best possible load

balancing with the obtained granularity data.

• Limitations of XTA: The XTA tool, as mentioned in Section 4.2.1, generates hard-

ware related unresolvable errors when analyzing the granularities for runnables. In

this work, for the tasks that the timing analysis resulted in unresolvable errors, the dis-

assembly instructions are counted. This approach disregards loops and might lead to

non-accurate granularities.

• Hardware limitations: Hardware limitations affect the outcomes when the energy con-

sumption is a concern. Since the default DVFS option for Raspberry Pi 3 only allows

underclocking to 600MHz clock frequency and other frequencies are not supported,

the default underclocking is investigated to obtain reduced energy consumption.

• XMOS Multicore Design Rules and Third-party library conflicts: In the low-level

module, which uses the XMOS xCORE-200 eXplorerKIT multi-core development board

as its basis, some tasks could not distributed effectively along individual cores of the

system. This is because of the conflict between XMOS multi-core design rules and

the used third party libraries. According to XMOS multi-core design rules which are

explained in [40], only a combinable function can be distributed to a single core. How-

ever, due to the fact that core implementations of some library functions do not have a

combinable nature, those functions were not able to be distributed. Furthermore, the

library functions which use multiple cores were not also able to be distributed manually

to cores. Although these changes are reflected to the model, due to being unable to

distribute some tasks, the output from APP4MC does not present an optimal solution

regarding load balancing and reduced energy consumption.

• Deficiency in Core Utilization Tracing in XMOS: The provided register information

is not sufficient in reading core utilization information for sporadic tasks. Only periodic

tasks are correctly measured with the introduced core reading methodology. For that

reason, the utilization is not visualized very efficiently.

5.2. Modeling the A4MCAR using APP4MC

In Section 2.10, motivations and design techniques of APP4MC were introduced. The users

have to start designing the parallel application by making use of the modeling functionality of

APP4MC. In order to evaluate how APP4MC performs in regard to the A4MCAR, the design

starts by identifying several attributes that are related to software and hardware. With the
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help of the modeling functionality of APP4MC, A4MCAR’s hardware details, software details,

constraints, and common elements (such as tags) are described. It is important to mention

that APP4MC can be used to describe several types of models such as Components Model,

OS Model, Mapping Model, Stimuli Model, and Event Model. However, the model in this

work explains the minimalistic model that can be used to make use of APP4MC’s partitioning

and mapping features. The models contain XML-based hierarchy with elements having their

childs and attributes. With this hierarchy, the containments of the elements are described

easily. The following list briefly explains the initially created model, which is also shown in

the AMALTHEA Contents tree window given by the Figure 5.1:

Figure 5.1.: AMALTHEA Contents tree window for the created model for A4MCAR

• Hardware Model: The hardware model consists of two processor types: xCORE-200

for the low-level module (XMOS board), and ARM Cortex-A53 for the high-level mod-

ule (RPI3 board). The HW System element contains ECUs (XMOS and RPI3) with

each of the ECUs having their respective microcontrollers defined. For the A4MCAR,

the XMOS ECU has two tiles defined as microcontrollers (Tile0 and Tile1) , whereas

the RPI3 ECU has only one microcontroller element which is CortexA53. Each mi-

crocontroller element has their respective clocks and individual cores defined under

them. That is, Tile0 has 8 cores, Tile1 has 8 cores, and CortexA53 has 4 cores. Fur-

thermore, the default clock setup (when energy consumption is not a concern) requires

Tile0 and Tile1 to have 500MHz system frequency in the model whereas CortexA53 is
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defined as 1.2GHz. The defined hardware model is used in APP4MC for the mapping

of software processes to the hardware cores.

• Software Model: The software model defines the pairwise relationship between runnables,

activation conditions of runnables, labels (memory read and write accesses), events

and interrupts. A minimalistic software model in APP4MC should have runnables, la-

bels and activations defined which are shown in the Figure 5.1.

In chapter 4, the information tracing of multi-tasked systems is discussed. By making

use of the aforementioned techniques, runnables, labels, and activations should be

defined. Even in a distributed architecture such as the A4MCAR, all the runnables

from each ECU are listed under the Runnables element. Runnables usually are the

smallest execution units of a task. However, for the A4MCAR some processes, events,

and tasks are modeled as runnables due to the ease of modeling. For the A4MCAR,

an initial analysis led up to a model with 41 runnables. Each runnable listed under

Runnables element has its own granularity (i.e number of instructions) defined. Fur-

thermore, labels are used to define shared variables and inter-process communication.

Labels are defined e.g. in bit size and memory size and each runnable is configured

depending on their read and write accesses to labels. One should take a look at the

Figures 3.19 and 3.25 in order to see label accesses that are modeled in A4MCAR’s

low-level and high-level module. Finally, activations of each runnable are listed. Com-

monly, activations can either be periodic or sporadic (random).

After the minimalistic software model is ready, performing partitioning and tracing fea-

tures will improve the existing model. As an example, Process Prototypes will be

automatically generated after the partitioning.

• Constraints Model: The contraints model commonly is used for defining target core

dependencies and pairings for the generated partitions. In A4MCAR’s model, runnables

that functionally belong together are paired using constraints model (by using Runnable

Pairing Constraint). As an example, in Figure 5.1 it is shown that tasks related to e.g.

Bluetooth, Ethernet and Steering are bound together. Thus, the created partitions and

tasks would consider this runnable binding. Furthermore, target core requirements

for Monitor_Tile0 task and Monitor_Tile1 task are defined using the constraints model,

since Monitor_Tile0 task should be on one of the Tile0 cores and Monitor_Tile1 task

should be on one of the Tile1 cores. Finally, generic core specifications are defined

(GenericRPIBinder and GenericXMOSBinder ) . Since the A4MCAR has a distributed

architecture, it is important to make sure that low-level module tasks are mapped to

low-level module cores and high-level module tasks are mapped to high-level cores

by specifying those binders. As a general note, the information that is specified in the

constraints model is used in the pre-partitioning, partitioning, and mapping phases.
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• Common Elements: In A4MCAR, tags are used from the common elements model.

Tags define binders for runnables that are considered in the pre-partitioning phase.

Thus, the pre-partitioning phase would generate partitions that have the same tags. In

A4MCAR, by making use of two tags which are LLM_Task and HLM_Task, it is made

sure that generated partitions and tasks will not have runnables that run on the other

module. This means that low-level module runnables and high-level module runnables

are isolated.

Although the previously explained model includes both low-level module and high-level mod-

ule components, to generate partitioning and mapping outputs, the model is seperated to two

AMALTHEA models, each of which containing the elements for respective modules (high-

level and low-level). The reason to use this approach was the lack of the implementation of

tag-based (in our case with respect to modules) partition grouping in the version of APP4MC

(0.8.1) that was used.

5.3. Partitioning and Mapping

One important thing to consider when partitioning the runnables, especially in the Critical

Path Partitioning, is that when label accesses are strictly modeled, the partitioning output

might not be ideal for parallelization towards load balancing. The reason is that APP4MC,

in the partitioning stage puts all the runnables that belong to the critical path to one single

partition. Our experiments showed that A4MCAR’s real-world application encountered to this

problem that results in poor load balancing initially due to the fact that task dependencies are

strictly considered in APP4MC in contrast with OS-based scheduling. To solve this issue,

two solutions are considered: (1) - Removing non-critical label accesses, (2) - Defining non-

critical label accesses as Access Precedence to prevent APP4MC from considering label

accesses strictly in model, and do the partitioning towards load-balancing.

After the modeling, partitioning (pre-partitioning is performed automatically before partition-

ing), task generation, and mapping are performed by using APP4MC to obtain the distribu-

tion results. Obtained results will be shown in the following sections.

For the sake of completeness, APP4MC’s partitioning and mapping outcomes are briefly

discussed. After the model is complete, by using APP4MC multicore sections drop-down

menu, one can perform several operations. After the partitioning is complete on the initally

created model, a new model that includes the process prototypes is generated in the output

folder in the APP4MC project. Under Process Prototypes, partitions can be seen which

shows all the runnables that are in a partition. The Figure 5.2 depicts an example partitioning

outcome.
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Figure 5.2.: Example partitioning output from APP4MC

After the partitioning, one should generate tasks using the same drop-down menu. On the

created new model, one can perform the mapping process. It is important to know that all

the steps such as partitioning, task generation, and mapping can be handled by using the

MC Wizard tool of APP4MC. The mapping generates the utilization information shown at the

console for the given model as well as the mapping output on the model as shown in Figure

5.3. In the figure, allocation of created partitions to the cores is illustrated. If desired, using

these mapping outcomes and using a custom scheduler, the simulation of the schedule of

tasks on cores are also possible by using the APP4MC’s Visualize Task Execution feature.

Since in this work, real traces are used for visualizing the task execution, this feature is not

used.

Figure 5.3.: Example mapping outputs from APP4MC (ESSP partitioning, 10 partitions)

In the APP4MC’s mapping stage, GA-based mapping algorithm towards load balancing goal
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has been used, due to a minor bug at the ILP-based algorithm at the time. The ILP-based

mapping algorithm of APP4MC features a 1-step algorithm that is used toward the goal of

minimizing the total computation time. After this goal is achieved, remaining processes are

more or less distributed randomly. In the case of A4MCAR’s applications, GA-based algo-

rithm and ILP-based algorithm only had very minor utilization differences. However, Lukas

Krawczyk et al. [103] states that with a 2-step or n-step algorithm, the load on cores could

be balanced more optimally. APP4MC’s mapping results present a suggestive mapping

outcome to the user. User could decide to use lesser number of cores or under-clock the

cores to reduce power consumption. Further evaluations in this report shows the results of

mapping using GA-based load balancing algorithm.

5.4. Evaluation of Different Distributions

Several evaluation metrics are used for evaluating different distributions, using the results

from sequential, OS-based, and APP4MC-based software deployment outcomes. These

metrics are presented previously and involve average slack time, gross execution time, com-

putation time, utilization percentages in cores, deadline misses, current utilization used by

the processor (in relation to power consumption). Furthermore, tracing results are be visu-

alised using Eclipse TraceCompass for key distributions in the following subsections.

5.4.1. Evaluation of the High Level Module Distributions

In this section, APP4MC outcomes are presented and compared to Sequential and GNU/Linux

OS outcomes. For the sake of clarity, this section introduces all the implemented and mod-

eled runnables with their instruction sizes (obtained using perf stat tool) and activations in

the Table 5.1. Because of the aforementioned limitations (causal order is not necessary in

many applications, and OS does not ensure causal order), only the dependency graph for

the Dummy Graph process is modeled, which is shown in the Figure 3.33, to demonstrate

partitioning outcomes.

Later in this section for specific distributions, some threads and processes will be picked and

partitioning and mapping outcomes will be discussed for those process and thread groups.

Furthermore, the visualizations of the system traces are presented to depict how distribution

briefly looks and to what extent the CPU is utilized.

Three mapping results are compared for every high-level distribution at the end of this sec-

tion: OS distribution in which core affinities are not constrained (that is, processes and

threads are not bound on a single core, they can be moved between the cores 0-3 at any

time by the kernel when scheduling), sequential mapping where core affinities are forced
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to only one single core, and APP4MC mapping where core affinity results are obtained by

making use of APP4MC’s partitioning and mapping results.

To have flexibility in the mapping stage, the partitioning feature of APP4MC is configured

to create 10 partitions that are created using ESSP (Earliest Start Schedule Partitioning).

In APP4MC’s ESSP algorithm, runnables that have the same activation period or activation

type are placed to seperate partitions if not configured otherwise. With partitions that have

same activation period, runnables are placed to partitions to reach load balancing. For

the mapping stage, for all distributions GA-based load balancing technique is chosen from

APP4MC which is currently optimized towards reducing the overall computation time.

5.4.1.1. APP4MC Results for the Distribution HL_Distr_wStream

The initial distribution for the high-level module (HL_Distr_wStream) involves the processes

and threads that actually contribute to the functionality of the A4MCAR. In other words, the

A4MCAR is not stressed by using any additional dummy load processes. Since both the

image processing process and the camera stream use the Raspberry Pi camera, this dis-

tribution demonstrates the mapping results when the camera is used by the Camera Stream

process. This means that the Image Processing process is not active in this distribution but

is active with another distribution.

In the HL_Distr_wStream distribution, the following processes are considered active (run-

ning, contributes to the processing, and therefore modeled) from the process and thread

list given in Table 5.1: Camera Stream, Web Server, Core Recorder, Ethernet Client, VNC

Server, Touchscreen, Dummy Graph.

Partitioning and mapping of this distribution using APP4MC with no constraints resulted in

the partitions that are shown in the Table 5.2.

5.4.1.2. APP4MC Results for the Distribution HL_Distr_wImageProc

The process list in which the camera stream is not active but the image processing is active

is also modeled and evaluated in this distribution. In the distribution HL_Distr_wImageProc,

the following processes are considered active from the process and thread list given in Table

5.1: Web Server, Core Recorder, Ethernet Client, VNC Server, Touchscreen, ImageProcess,

Dummy Graph.

Partitioning and mapping of this distribution using APP4MC with no constraints resulted in

the partitions that are shown in the Table 5.3.
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Process / Thread Name Granularity Activation

Web Server 500000 Sporadic [1s periodic]

Core Recorder 525000 Periodic 3s

Ethernet Client 120000 Periodic 0.01s

VNC Server 10000000 Sporadic [1s periodic]

Camera Stream 1500000 Sporadic [1s periodic]

ImageProcess 450000000 Periodic 0.65s

dummy_load_25_1 198000000 Periodic 1.4s

dummy_load_25_2 198000000 Periodic 1.4s

dummy_load_25_3 198000000 Periodic 1.4s

dummy_load_25_4 198000000 Periodic 1.4s

dummy_load_25_5 198000000 Periodic 1.4s

dummy_load_100 198000000 Periodic 0.5s

Touchscreen threads given below threads given below

MainThread 110000000 Periodic 0.5s

UpdateUtil 150000000 Periodic 2s

TimingCalculation 158000000 Periodic 2.8s

TouchEvents 10000000 Periodic 0.1s

Dummy Graph threads given below threads given below

A 9000000 Periodic 0.5s

B 27000000 Periodic 0.5s

C 36000000 Periodic 0.5s

D 81000000 Periodic 0.5s

E 9000000 Periodic 0.5s

F 18000000 Periodic 0.5s

G 45000000 Periodic 0.5s

H 27000000 Periodic 0.5s

I 18000000 Periodic 0.5s

J 36000000 Periodic 0.5s

Table 5.1.: All processes and threads with their granularity and activation information (with Sporadic
activation assumptions shown with square brackets)

5.4.1.3. APP4MC Results for the Distribution HL_Distr_AvgStress

In the distribution HL_Distr_AvgStress, the A4MCAR is partially stressed. This is achieved

by introducing two dummy loads. In this distribution, the following processes are consid-

ered active from the process and thread list given in Table 5.1: Web Server, Core Recorder,

Ethernet Client, VNC Server, Dummy Graph, Touchscreen, Camera Stream, dummy_load_25_1,
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Partition Name Process (Threads) List Allocated Core

ESSP0 Touchscreen (TouchEvents) 1

ESSP1 Ethernet Client 1

ESSP2 Core Reader 2

ESSP3 Touchscreen (MainThread) 1

ESSP4 Touchscreen (TimingCalculation) 0

ESSP5 Touchscreen (UpdateUtil) 1

ESSP6 Dummy Graph (A, E, C, F, D, J) 2

ESSP7 Dummy Graph (B, H, G, I) 3

ESSP8 Web Server, VNC Server 1

ESSP9 Camera Stream 1

Table 5.2.: Partitioning and mapping results of HL_Distr_wStream using APP4MC

Partition Name Process (Threads) List Allocated Core

ESSP0 VNC Server, Web Server 0

ESSP1 Touchscreen(TouchEvents) 0

ESSP2 Ethernet Client 1

ESSP3 Core Reader 1

ESSP4 Touchscreen (MainThread) 0

ESSP5 Touchscreen (TimingCalculation) 3

ESSP6 Touchscreen (UpdateUtil) 1

ESSP7 ImageProcess 2

ESSP8 Dummy Graph (A, E, C, F, D, J) 1

ESSP9 Dummy Graph (B, H, G, I) 0

Table 5.3.: Partitioning and mapping results of HL_Distr_ImageProc using APP4MC

dummy_load_25_2.

Partitioning and mapping of this distribution using APP4MC with no constraints resulted in

the partitions that are shown in the Table 5.4.

5.4.1.4. APP4MC Results for the Distribution HL_Dist_FullStress

The distribution HL_Dist_FullStress represents the distribution in which nearly all the cre-

ated processes and threads are running. Thus, the A4MCAR’s high-level module is in

the most stressed state. In this distribution, the following processes are considered active

from the process and thread list given in Table 5.1: Web Server, Core Recorder, Ethernet
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Partition Name Process (Threads) List Allocated Core

ESSP0 VNC Server, Web Server, Camera Stream 2

ESSP1 Touchscreen (TouchEvents) 1

ESSP2 Ethernet Client 1

ESSP3 Core Reader 3

ESSP4 Dummy Graph (all threads) 1

ESSP5 Touchscreen (MainThread) 3

ESSP6 Touchscreen (TimingCalculation) 0

ESSP7 Touchscreen (UpdateUtil) 2

ESSP8 dummy_load_25_2 1

ESSP9 dummy_load_25_1 3

Table 5.4.: Partitioning and mapping results of HL_Distr_AvgStress using APP4MC

Client, VNC Server, Dummy Graph, Touchscreen, Camera Stream, dummy_load_25_1, dummy_

load_25_2, dummy_load_25_3, dummy_load_25_4, dummy_load_25_5, dummy_load_100.

Partitioning and mapping of those processes and threads using APP4MC with no constraints

resulted in the partitions that are shown in the Table 5.5.

Partition Name Process (Threads) List Allocated Core

ESSP0 VNC Server, Web Server, Camera Stream 1

ESSP1 Touchscreen (TouchEvents) 3

ESSP2 Ethernet Client 1

ESSP3 Core Reader 0

ESSP4 Dummy Graph (all threads) 3

ESSP5 Touchscreen (UpdateUtil) 0

ESSP6 dummy_load_25_5, dummy_load_25_3, dummy_load_25_1 2

ESSP7 dummy_load_25_4, dummy_load_25_2 1

ESSP8 Touchscreen (MainThread) 0

ESSP9 dummy_load_100 1

Table 5.5.: Partitioning and mapping results of HL_Distr_FullStress using APP4MC

5.4.1.5. Comparison of High-level Module Distributions

APP4MC is able to display theoretical load utilization among modeled cores of a system.

The experiments done using GA-based mapping approach with 10-partitions partitioned

using ESSP algorithm resulted in the utilization given in the Figure 5.4.
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Figure 5.4.: Resulted Mapping Utilizations from Distributions

It must be observed that due to the several limitations mentioned below, the obtained results

do not have a complete load balance. Moreover, the utilizations presented in the table

are theoretical results with one core running at 100% everytime because the mapping is

implemented this way to reduce computation time. A 100% percentage is adapted towards

total time for the specific distribution, not toward deadlines and activations. Using a Linux

scheduler on top of these results would alter the utilizations obtained in actual case.

• By default, partitioning considers load-balancing, but with only for partitions that have

the same type of activation. However, one can deactivate activation grouping in APP4MC.

Deactivating activation grouping may result in better load balancing but unfeasible ex-

ecutions. In the case of A4MCAR, activation grouping caused partitions to have im-

properly load balanced partitions.

• Partitioning gives higher priority to sequences, since considering synchronization be-

tween runnables will result in reduced computation time. However, it is important to

note that dependencies in sequences are not ensured in OS.

• The mapping approach in APP4MC focuses on reducing overall computation time

rather than achieving pure load balance. Reducing the overall computation time is

focused on improving deadline misses, whereas load balancing helps with energy ef-

ficiency and slack time.

• Modeled runnables are not 100% fine-grained as it is in the theoretical or industrial

applications. The reason it is not 100% fine-grained as in the industry is the lack of low-

level open-source real-time tools. Since the functionality of the application is complex

and open-source tools are used, the amount of overhead is significantly higher than
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it is in industrial software systems. This could also lead to load imbalance between

cores.

By applying APP4MC-based, OS-based, and Sequential core affinities to the processes

and threads for the A4MCAR, Table 5.6 is obtained. In Table 5.6, distributions are eval-

uated by changed the distribution type (APP4MC, OS, Sequential) and CPU clock speed

(fclk = 1.2GHz or 600MHz). Obtained performance indicators involve, total gross execu-

tion time (GET), slack time average (STavg), deadline miss percentage (DLM), utilization in

each core (U0-3), and the current drained by the board (IDD) as an indicator for power con-

sumption. When evaluating the high-level distributions, the following assessments should

be outlined:

No Distr.Name Distr.Type fclk GET STavg U0-3 (%) DLM IDD

1 HL_Distr_wStream OS 1.2GHz 2-2.5s 0.71s varies 0 % 0.79-0.85A

2 HL_Distr_wStream Sequential 1.2GHz 14.50s 0.42s 0/0/0/100 43 % 0.77A

3 HL_Distr_wStream APP4MC 1.2GHz 1.88s 0.73s 25/25/55/35 0 % 0.75-0.81A

4 HL_Distr_wImageProc OS 1.2GHz 3.4s 0.65s varies 0 % 0.890-0.920A

5 HL_Distr_wImageProc Sequential 1.2GHz 14.5s 0.38s 0/0/0/100 35 % 0.8A

6 HL_Distr_wImageProc APP4MC 1.2GHz 6s 0.55s 80/55/57/30 5-23 % 0.85A

7 HL_Distr_AvgStress OS 1.2GHz 3.34s 0.71s varies 0 % 0.800-0.950A

8 HL_Distr_AvgStress Sequential 1.2GHz 21.55s 0.38s 0/0/0/100 50 % 0.750A

9 HL_Distr_AvgStress APP4MC 1.2GHz 8.66s 0.55s 30/100/5/35 22-33 % 0.760A

10 HL_Distr_FullStress OS 1.2GHz 9.59s 0.57s 100/100/96/100 18 % 0.940.975A

11 HL_Distr_FullStress Sequential 1.2GHz 59s 0.26s 0/0/0/100 68 % 0.750A

12 HL_Distr_FullStress APP4MC 1.2GHz 13.48s 0.45s 75/100/85/95 18-22 % 0.88A

13 HL_Distr_wStream OS 600MHz 2.2-2.6s 0.69s varies 0 % 0.77-0.82A

14 HL_Distr_wStream Sequential 600MHz 14.66s 0.43s 0/0/0/100 43 % 0.76A

15 HL_Distr_wStream APP4MC 600MHz 1.94s 0.72s 25/25/55/35 0 % 0.73-0.75A

16 HL_Distr_wImageProc OS 600MHz 4.0s 0.58s varies 0 % 0.87-0.91A

17 HL_Distr_wImageProc Sequential 600MHz 15.15s 0.38s 0/0/0/100 35-43 % 0.79A

18 HL_Distr_wImageProc APP4MC 600MHz 6.1s 0.55s 80/55/57/30 31 % 0.82-0.85A

19 HL_Distr_AvgStress OS 600MHz 3.40s 0.70s varies 0 % 0.760A

20 HL_Distr_AvgStress Sequential 600MHz 21.05s 0.34s 0/0/0/100 52 % 0.739A

21 HL_Distr_AvgStress APP4MC 600MHz 8.70s 0.53s 30/100/5/35 22-33 % 0.74A

22 HL_Distr_FullStress OS 600MHz 9.7s 0.54s 100/100/100/100 22 % 0.940A

23 HL_Distr_FullStress Sequential 600MHz 57-59s 0.18-0.28s 0/0/0/100 68-75 % 0.740A

24 HL_Distr_FullStress APP4MC 600MHz 13.70s 0.41-0.44s 75/100/85/95 18-31 % 0.87A

Table 5.6.: Distributions compared in High-level module

• Resulted APP4MC timing performance by looking at slack time averages and overall

execution time is better than Sequential timing in all cases as expected.

• In a lot of cases, the Linux OS context-switching mechanism with no core affinity con-

straints performed better than APP4MC-based core affinity distributed results. How-

ever, we see that in HL_Distr_wStream, APP4MC scored better than OS distribution.

Therefore, we can say that achieving a better performance than OS-based distribution

in Linux-based systems is possible, but not guaranteed. In order to ensure to obtained
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best results every time, models should be made precise and application needs to be

as fine-grained as possible.

• As shown the table, in almost every distribution, APP4MC improved current and thereby

power consumption by around 0.10-0.15A. It is observed that OS-based distribution

resulted in the highest power consumption, whereas power consumption in APP4MC

and Sequential distributions were similar. It should be noted that this is due to intensive

context-switching in OS-based distribution when core affinities not constrained.

• It is also shown in table that changing the clock frequency alone improved the current

consumption, but very slightly. One can observe this improvement from table which is

about 0.01-0.05A. By using a lower chip voltage would make this power improvement

a lot better. Due to safety concerns, this approach has not been applied to this work.

• One should also note that achieving significantly reduced power consumption is possi-

ble through load balancing. Since approaches used in APP4MC does not concentrate

on pure load-balancing in non industry-type systems, the power consumption improve-

ment observed in this evaluation is smaller.

• It must be noted that sequential distributions led to huge stability issues which were

noticable from the system operation and are observable from deadline misses given in

the table.

• Experiments made with ILP-based mapping algorithm and GA-based mapping algo-

rithm gave similar results. Due to bugs in the ILP-based mapping algorithm at the time

of evaluation (such as partitions not being mapped to a core at all), GA-based results

are used.

• It can be seen that power consumption is higher when core usage is high. However,

having high core usage improves the system timing performance. The reason why

load balancing is important lies in this fact to have timing performance and power

consumption improved at the same time.

• OS-based distribution scored mostly 0% deadline misses. However, APP4MC intro-

duced slight deadline misses to the system and resulted in higher execution times.

This can be reasoned by the following:

– The real-time capability of Raspberry Pi is very low because the scheduler used in

Raspbian (CFS) has high fairness. Furthermore, implemented schedulability and

tracing features as well as Linux kernel introduces overheads. This effects the

obtained results. Using a real-time kernel with minimal overhead would produce

better results.
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– Main purpose with APP4MC is that intends to move the embedded development

in the direction of model-based development. It is used as a supplementary tool

for standards such as AUTOSAR. Using the tool with a non-industry board and

distribution (Raspberry Pi, Raspbian) is effecting the results because scheduling

is left entirely to Linux kernel which does not ensure the causal order (dependen-

cies) of runnables and it is not necessarily real-time.

– The fact that APP4MC scored better in HL_Distr_wStream indicate that when

processes and threads are more fine-grained and dependency of processes and

threads are lesser (thus, more parallelization potential due to non-sequential

runnables), it is possible that APP4MC can produce better results than OS-based

distributions.

– Technologies used in APP4MC require actual runnables to be partitioned and

mapped. Since this is not possible for the Raspberry Pi, and only thread and

process can be distributed among cores, threads and processes are modeled as

runnables. Since runnable distribution and tracing in the lowest level would re-

quire too much effort for the scope of thesis, threads and processes are used.

With this approach, dependencies between runnables and dependencies be-

tween threads are counted as the same. But in fact, it may not. APP4MC is

built for more low-level design but in this work it is used in high-level design.

– APP4MC’s partitioning algorithm uses activation period-based grouping by de-

fault. Having no activation grouping may result in better load balancing but unfea-

sible executions. Since in our particular application, periods used in are runnables

are quite different, partitioning gave results that are not aimed toward load-balancing.

– Furthermore, APP4MC’s mapping algorithm is not entirely focused on load bal-

ancing. The main optimization goal used in APP4MC’s GA-based mapping al-

gorithm (in version 0.8.1) is reducing the overall computation time. Partitions

are distributed randomly otherwise. Therefore, OS scored better performance

than APP4MC in timing because the load is not sufficiently balanced in APP4MC

(comparing U0-3 entries in Table 5.6).

– APP4MC focuses on ideal vision of embedded computing, that is using static

scheduling to base parallelization foundations based on models. OS systems

such as Linux uses dynamic scheduling and migrates all the tasks between sev-

eral cores. Using static scheduling with models for specific optimization goals can

suggest better outcomes.

To make sure that distributed processes (and not threads) affect the results, a second exper-

iment has been conducted with only threads, formed by a dummy graph (given in Fig 3.33),
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running in the Linux system. This experiment also showed that the OS is capable of perform-

ing better in terms of timing. For example, an average slack time of 0.48s is obtained with

OS-based distribution whereas APP4MC was able to score 0.44s. Thus, the results shown

in this section are considered to show the actual performance of APP4MC. Furthermore, the

Linux OS scheduler is able to split the graph more fine-grained because of the fact that it

can migrate tasks between cores at any time.

To demonstrate how affinity constraints affected system performance, the work done in the

tracing chapter is used and system traces have been taken. The 10 second system traces

for entire Linux system are taken with perf [90], converted to CTF format [98], and visualized

using Eclipse TraceCompass [95]. The Figure 5.5 demonstrates how OS-based, APP4MC-

based, and sequential distributions for the HL_Distr_AvgStress is scheduled by Linux kernel

among the Raspberry Pi’s cores. Moreover, the distribution when APP4MC performed better

than OS is also given with the Figure 5.6.

Figure 5.5.: System trace showing how processes and threads are distributed and how CPU
performed in HL_Distr_AvgStress

In the aforementioned figures, it is shown that the load is most efficiently distributed in

OS-based distribution, whereas APP4MC lacked balanced load in HL_Distr_AvgStress. In

HL_Distr_wStream, APP4MC’s load distribution looks more balanced. Therefore it can be

shown that it is able to perform better than OS-based distribution slightly. This can be rea-

soned by stating that non fine-grained processes and threads such as dummy loads and
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Figure 5.6.: System trace showing how processes and threads are distributed and how CPU
performed in HL_Distr_wStream

image processing are not involved in HL_Distr_wStream.

New algorithms are now being developed for APP4MC to ignore dependencies to make

sure APP4MC could be used for OS-based systems as well rather than low-level systems

that ensure the causal order (dependencies) of runnables. Ignoring dependencies using

bin-packing algorithms [104] will be used in APP4MC for producing results for applications

running in complex OS-based systems.

5.4.2. Evaluation of Low Level Module Distributions

In the low-level module, the contribution of APP4MC is more essential because of the fact

that the number of tasks exceed the number of cores and there is no automatic mapping

implemented in xCORE. If the APP4MC is not used, the code can’t even be compiled be-

cause some tasks should be squeezed in cores. If cores are not specified, xCORE gives an

error stating that the number of cores required exceeded. The mapping is done manually

at the compile-time, not automatically at run-time. Therefore, developers have to decide by

themselves which tasks should be placed on which cores. Considering that the goal is min-

imizing the overall computation time and achieving a better parallel performance, APP4MC

results help greatly in terms of low-level implementations.
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In this context, to find the correct distribution to reduce the number of cores used and to com-

pile the code properly, two distributions are presented. The first distribution, LLM-Distribution-

Unconstrained, is the unconstrained version of the created APP4MC model. In this model,

constraints that are used are kept at minimal level in order to see what would happen if the

model is not properly engineered.

In xCORE-based software development, the coding experiments show that some types

of tasks should be placed in cores seperately regardless of their load balancing such as

the tasks that are more sporadically activated rather than periodically. In order not to in-

terfere with the functionality of the applications, these apps are constrained in the model

to be placed in seperate cores. The distribution that involves this approach is given with

LLM-Distribution- Constrained.

5.4.2.1. LLM-Distribution-Unconstrained

In the first subsection of Section 5.4.2, the scope of LLM-Distribution-Unconstrained dis-

tribution is explained. The mapping results of this distribution using APP4MC could be seen

in the Table 5.7. It is shown that in this model, the distribution is loosely constrained.

5.4.2.2. LLM-Distribution-Constrained

In the first subsection of Section 5.4.2, the scope of LLM-Distribution-Constrained distri-

bution is explained. The additional constraints are applied to the existing model regarding

sporadically activated tasks and the model details are shown with the Table 5.8.

5.4.2.3. Results of Low-level Evaluation

The low-level module distributions are compared at Table 5.9. Due to the limited available

timers, the low-level module is evaluated with the available metrics such as slack time, ex-

ecution time, and average utilization. The table shows that the unconstrained model is less

utilized than the constrained model. Slack time of the unconstrained model being less than

that of the constrained model suggests that timing performance of the constrained model is

also better. It is important to add that unconstrained model results in functionality problems.

As a result, one can learn that platform-specific and OS-specific constraints should be well

engineered in the APP4MC model in order to achieve a higher performance and a more

stable embedded system.
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Task Name Granularity Activation Mapping Core Tile

EthernetServer.TimerEvent 1000 Periodic 5s Manual 1 0

EthernetServer.ShareCoreUsage0 50 Sporadic Manual 1 0

EthernetServer.ShareCoreUsage1 50 Sporadic Manual 1 0

EthernetServer.xtcp_event 100 Sporadic Manual 1 0

ControlLightSystem.ST_Timer 1001 Periodic 0s-0.020s Manual 0 0

ControlLightSystem.TH_Timer 1001 Periodic 0s-0.020s Manual 0 0

ControlLightSystem.ShareState 50 Sporadic Manual 0 0

Bluetooth.UART_RXDataReady 1017 Sporadic Manual 4 0

Bluetooth.SendCmdEvent 127 Periodic 0.050s Manual 4 0

Bluetooth.TimerEvent 1000 Periodic 0.050s Manual 4 0

ServoController.ShareSteering 30 Sporadic Manual 2 0

ServoController.TimerEvent 987 Periodic 0s-0.020s Manual 2 0

ReadSonarSensors 519 Periodic 0.200s Manual - 0

DriveTBLE02S.ShareDistance 50 Sporadic Manual 3 0

DriveTBLE02S.ShareDirection 50 Sporadic Manual 3 0

DriveTBLE02S.ShareSpeed 50 Sporadic Manual 3 0

DriveTBLE02S.TimerEvent 1001 Periodic 0s-0.020s Manual 3 0

output_gpio 44 Sporadic Manual 2 0

input_gpio 15 Sporadic Manual 2 0

i2c_master 1188 Sporadic Manual 7 0

uart_rx 448 Sporadic Manual 2 0

uart_tx 71 Sporadic Manual 2 0

xtcp 2000 Sporadic Manual - 0

MonitorCores0 245 Periodic 1s Manual 6 0

MonitorCores1 245 Periodic 1s Manual - 1

smi 225 Sporadic Manual - 1

rgmii_ethernet_mac 4000 Sporadic Manual - 1

ar8035_phy_driver 75 Periodic 1s Manual - 1

Table 5.7.: LLM-Distribution-Unconstrained details in Low-level Module
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Task Name Granularity Activation Mapping Core Tile

EthernetServer.TimerEvent 1000 Periodic 5s Manual - 0

EthernetServer.ShareCoreUsage0 50 Sporadic Manual - 0

EthernetServer.ShareCoreUsage1 50 Sporadic Manual - 0

EthernetServer.xtcp_event 100 Sporadic Manual - 0

ControlLightSystem.ST_Timer 1001 Periodic 0s-0.020s Manual 7 0

ControlLightSystem.TH_Timer 1001 Periodic 0s-0.020s Manual 7 0

ControlLightSystem.ShareState 50 Sporadic Manual 7 0

Bluetooth.UART_RXDataReady 1017 Sporadic Manual 1 0

Bluetooth.SendCmdEvent 127 Periodic 0.050s Manual 1 0

Bluetooth.TimerEvent 1000 Periodic 0.050s Manual 1 0

ServoController.ShareSteering 30 Sporadic Manual 4 0

ServoController.TimerEvent 987 Periodic 0s-0.020s Manual 4 0

ReadSonarSensors 519 Periodic 0.200s Manual - 0

DriveTBLE02S.ShareDistance 50 Sporadic Manual - 0

DriveTBLE02S.ShareDirection 50 Sporadic Manual - 0

DriveTBLE02S.ShareSpeed 50 Sporadic Manual - 0

DriveTBLE02S.TimerEvent 1001 Periodic 0s-0.020s Manual - 0

output_gpio 44 Sporadic Manual - 0

input_gpio 15 Sporadic Manual 0 0

i2c_master 1188 Sporadic Manual - 0

uart_rx 448 Sporadic Manual 0 0

uart_tx 71 Sporadic Manual - 0

xtcp 2000 Sporadic Manual - 0

MonitorCores0 245 Periodic 1s Manual - 0

MonitorCores1 245 Periodic 1s Manual - 1

smi 225 Sporadic Manual - 1

rgmii_ethernet_mac 4000 Sporadic Manual - 1

ar8035_phy_driver 75 Periodic 1s Manual - 1

Table 5.8.: LLM-Distribution-Constrained details in Low-level Module

Distr. Name GET STavg Avg. Utilization

LLM-Distribution-Unconstrained 0.14378s 0.02s 10 %

LLM-Distribution-Constrained 0.11930s 0.03s 12 %

Table 5.9.: Distributions compared in Low-level module

135



6. Conclusion

APP4MC is a platform that is used for engineering embedded multi-core and many-core

embedded systems. It emphasizes especially on the automotive domain where standards

such as AUTOSAR are highly involved. From the results, one can differentiate APP4MC from

other available tooling as follows. With this report, several conclusions should be pointed

out:

• In this work, APP4MC is evaluated using non-industry tools and platforms on a higher

level. Therefore, using more lower level industry tools and platforms should produce

better results. Moreover, Raspberry Pi’s real-time capabilities are proven to be very

poor because the scheduler used in Raspbian (CFS) has high fairness. Using a real-

time kernel (such as preemptRT [105]), one should expect more well utilized software

with APP4MC results.

• APP4MC focuses on static scheduling. By migrating tasks in between cores, OS dy-

namic schedulers introduce non-determinism in the design. However, with APP4MC

every step is well-known and well-modeled. This way, many suggestive distributions

can be generated using APP4MC. The developers should make design choices based

on their optimization goals. Developers might redirect their projects towards load bal-

ancing, power optimization, total utilization etc. using APP4MC.

• With the involvement of the model-based approach, every step of the embedded de-

sign should be carefully modeled. With the results of the low-level module evaluations,

it is shown that constraining the model for better accuracy improves the utilization out-

come that is produced by the APP4MC. Involving model-based development aspect,

on a more lower level, software design and deployment is more automatized once

model is created successfully.

• Results show that APP4MC is able to result in core affinity restrictions that can produce

better results than an operating system. In the experiments, operating systems mostly

produced better utilization. However, using an accurate model and well-engineered

fine-grained software, one can achieve even better performance than the operating

systems.
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• Achieving significantly reduced power consumption is made possible through load

balancing. Since approaches used in APP4MC do not concentrate on pure load-

balancing in non industry-type systems, the power consumption improvement ob-

served in this evaluation is smaller. Yet, observed results with APP4MC improved

the power consumption compared to the OS-based distributions.

• Invoking the underclocking capabilities, a slight improvement in the power consump-

tion is observed. One can improve power consumption efficiency by activating Active

Energy Consumption (AEC) modes or involving voltage reduction in the Dynamic Volt-

age and Frequency Scaling (DVFS) features as well.

• APP4MC’s algorithms have the already mentioned limitations (listed below) in version

0.8.1

– APP4MC’s partitioning algorithm uses activation period-based grouping by de-

fault. Having no activation grouping may result in better load balancing but unfea-

sible executions. Since in our particular application, periods used in runnables are

quite different, partitioning gave results that are not aimed toward load-balancing.

– Furthermore, APP4MC’s mapping algorithm is not focused on load balancing.

The main optimization goal used in APP4MC’s mapping algorithm is reducing the

overall computation time. Partitions are distributed randomly otherwise. There-

fore, OS scored better performance than APP4MC in timing in most cases be-

cause the load is not sufficiently balanced in APP4MC.

– A4MCAR’s software development involves non-determinism. For example, some

tasks are not always deterministically activated. Especially in our applications,

many tasks are sporadically activated. However, APP4MC is not able to process

sporadically activated tasks and therefore assumptions have been made for these

non-deterministic model elements.

However, these algorithms are still in the improvement stage. New algorithms are now

being developed for APP4MC to ignore dependencies to make sure APP4MC could

be used for OS-based systems as well rather than low-level systems that ensure the

causal order (dependencies) of runnables. Ignoring dependencies using bin-packing

algorithms will be used in APP4MC for producing results for applications running in

complex OS-based systems.

In this work, necessary tracing, distribution, and evaluation features are discovered and

implemented regarding timing and power consumption in order to contribute to the open-

source tool APP4MC. Required feedback is given to APP4MC community for progress. Fur-

thermore, a base platform is developed for embedded multi-core development studies. With

parallel implementations on the A4MCAR as well as other demonstrators, C++ and Python
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language-based multi-processed and multi-threaded embedded system is developed and

maintained. Aforementioned contributions to the scientific community and open-source com-

munity are done.

The contributions to APP4MC demonstrators by this thesis’ author are maintained in the

following web links:

• The APP4MC Demonstrator repository:
https://git.eclipse.org/r/app4mc/org.eclipse.app4mc.examples

• Commits:
http://git.eclipse.org/c/app4mc/org.eclipse.app4mc.examples.git/log/

• Source Tree:
http://git.eclipse.org/c/app4mc/org.eclipse.app4mc.examples.git/tree/

• Documentation:
https://mozcelikors.github.io/a4mcar/

Multi-core processing is without a doubt today’s and future’s technology for information pro-

cessing. Tools such as APP4MC are useful in terms of easing this technology for developers

in a model-driven manner.

138



7. List of Figures

2.1. Memory Architectures [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Illustration of time-sliced execution paths in a multi-core processor [14] . . . . 16

2.3. Illustration of design techniques in parallelization [13] . . . . . . . . . . . . . . 18

2.4. Timing properties for scheduling in multi-tasked systems [15] . . . . . . . . . 21

2.5. Optimization goals of parallel software [13] . . . . . . . . . . . . . . . . . . . 22

2.6. AUTOSAR Architecture [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7. Eclipse APP4MC platform Editor Window [23] . . . . . . . . . . . . . . . . . . 27

2.8. AMALTHEA Model for APP4MC [22] . . . . . . . . . . . . . . . . . . . . . . . 27

2.9. Illustration of how parallel software are designed using APP4MC platform [4] 29

3.1. A4MCAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2. Applications developed and/or maintained for A4MCAR . . . . . . . . . . . . 34

3.3. Development boards used in A4MCAR . . . . . . . . . . . . . . . . . . . . . . 35

3.4. Illustration of XMOS’ xCore-200 Architecture [36] . . . . . . . . . . . . . . . . 36

3.5. XMOS vs Traditional Microcontroller [36] . . . . . . . . . . . . . . . . . . . . . 37

3.6. Pipelining Explained on XMOS [36] . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7. xTIMEComposer 14.2.3 Development Environment Windows . . . . . . . . . 38

3.8. High-level Linux system architecture [44] . . . . . . . . . . . . . . . . . . . . . 41

3.9. Process Life Cycle in a Linux System [44] . . . . . . . . . . . . . . . . . . . . 42

3.10.Linux Shell running Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.11.Hardware overview of A4MCAR . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.12.Duty cycle example in pulse width modulation [46] . . . . . . . . . . . . . . . 44

3.13.Simple UART data packet [47] . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.14.I2C protocol frame[48] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.15.Low-level module schematics of A4MCAR using XMOS xCore-200 eXplorerKIT 47

3.16.XP Power JCA0605S05 Level B Emission Circuit [54] . . . . . . . . . . . . . 48

3.17.Tamiya TT01-E Chassis and other parts used in A4MCAR . . . . . . . . . . . 48

3.18.Mechanical overview of the A4MCAR . . . . . . . . . . . . . . . . . . . . . . 49

3.19.Brief block diagram for the developed tasks and interfaces for low-level module 50

3.20.Block diagram for the developed tasks and interfaces for low-level module . . 50

139



7. List of Figures

3.21.Full file tree for all the tasks developed for low-level module . . . . . . . . . . 52

3.22.Two-channel relay board that is used for braking . . . . . . . . . . . . . . . . 55

3.23.Relay circuit to control braking . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.24.Driving command string format generated to contain speed, angle, and gear

information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.25.High-level module software component diagram including files and file accesses 64

3.26.Deployment diagram showing Ethernet communication . . . . . . . . . . . . . 69

3.27.How web servers and web browsers work illustrated [70] . . . . . . . . . . . . 70

3.28.How AJAX works [63] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.29.Web interface of the A4MCAR . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.30.Alternative web interface of the A4MCAR . . . . . . . . . . . . . . . . . . . . 73

3.31.Component diagram showing how communication inside the created web-

interface works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.32.Raspberry Pi camera v2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.33.Dummy Graph that is created and its details . . . . . . . . . . . . . . . . . . . 78

3.34.Developed Image Processing Application . . . . . . . . . . . . . . . . . . . . 78

3.35.Applied Functions in OpenCV to Detect a Traffic Cone . . . . . . . . . . . . . 79

3.36.Button functions of A4MCAR Touchscreen Display . . . . . . . . . . . . . . . 80

3.37.5 inch Touchscreen module from Waveshare . . . . . . . . . . . . . . . . . . 81

3.38.State machine of the touchscreen process for pages as modes . . . . . . . . 81

3.39.Display modes from A4MCAR Touchscreen Display . . . . . . . . . . . . . . 82

3.40.Android Application Developed for Driving A4MCAR Remotely . . . . . . . . 86

3.41.Joystick angle transformation to construct driving command . . . . . . . . . . 86

4.1. XMOS Timing Analyzer (XTA) screenshot . . . . . . . . . . . . . . . . . . . . 91

4.2. XTA Visualizations window with further information . . . . . . . . . . . . . . . 92

4.3. XTA Binary Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4. System monitoring implemented on xCORE . . . . . . . . . . . . . . . . . . . 96

4.5. XS-1 Power Graph Related to Base Current for an xCORE Core . . . . . . . 97

4.6. Top command output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7. Kernelshark running on Linux (Raspbian) OS . . . . . . . . . . . . . . . . . . 106

4.8. Eclipse TraceCompass running on Windows . . . . . . . . . . . . . . . . . . . 108

4.9. TraceCompass visualization of processes and threads . . . . . . . . . . . . . 110

4.10.How DVFS reduces energy consumption explained [86] . . . . . . . . . . . . 113

4.11.Online Timing Analysis explained in A4MCAR . . . . . . . . . . . . . . . . . . 115

5.1. AMALTHEA Contents tree window for the created model for A4MCAR . . . . 118

5.2. Example partitioning output from APP4MC . . . . . . . . . . . . . . . . . . . 121

5.3. Example mapping outputs from APP4MC (ESSP partitioning, 10 partitions) . 121

5.4. Resulted Mapping Utilizations from Distributions . . . . . . . . . . . . . . . . 127

140



7. List of Figures

5.5. System trace showing how processes and threads are distributed and how

CPU performed in HL_Distr_AvgStress . . . . . . . . . . . . . . . . . . . . . 131

5.6. System trace showing how processes and threads are distributed and how

CPU performed in HL_Distr_wStream . . . . . . . . . . . . . . . . . . . . . . 132

C.1. Rover project and its web interface . . . . . . . . . . . . . . . . . . . . . . . . 155

141



8. List of Tables

3.1. Dummy load processes running in high-level module . . . . . . . . . . . . . . 77

5.1. All processes and threads with their granularity and activation information

(with Sporadic activation assumptions shown with square brackets) . . . . . . 124

5.2. Partitioning and mapping results of HL_Distr_wStream using APP4MC . . . . 125

5.3. Partitioning and mapping results of HL_Distr_ImageProc using APP4MC . . 125

5.4. Partitioning and mapping results of HL_Distr_AvgStress using APP4MC . . . 126

5.5. Partitioning and mapping results of HL_Distr_FullStress using APP4MC . . . 126

5.6. Distributions compared in High-level module . . . . . . . . . . . . . . . . . . . 128

5.7. LLM-Distribution-Unconstrained details in Low-level Module . . . . . . . . . . 134

5.8. LLM-Distribution-Constrained details in Low-level Module . . . . . . . . . . . 135

5.9. Distributions compared in Low-level module . . . . . . . . . . . . . . . . . . . 135

142



9. Listings

3.1. An Example Task Decleration in xC . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2. An Example of How Tasks are Placed and Interconnected in xC . . . . . . . . 51

3.3. Created PWM signaling template . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4. Calculation of on and off times for servo control . . . . . . . . . . . . . . . . . 55

3.5. Proximity sensing task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6. Bluetooth communication task pseudocode . . . . . . . . . . . . . . . . . . . 60

3.7. Finding busy and idle cycles in XS1 architecture . . . . . . . . . . . . . . . . 62

3.8. Online timing features implemented in Python language . . . . . . . . . . . . 67

3.9. Psutil function to retrieve core utilization information . . . . . . . . . . . . . . 69

3.10.Sending dynamic HTTP GET requests using jQuery . . . . . . . . . . . . . . 73

3.11.Dummy load created with Python . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.12.Using locks in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.13.Thread skeleton in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1. Placing end points in xC code to define an execution path . . . . . . . . . . . 91

4.2. Placing endpoints in XTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3. Analyzing a function in XTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4. Analyzing a loop in XTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5. Interfacing in XMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6. Printing core and tile information . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7. Using objdump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.8. Using dis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9. Using dis in Python shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10.Using perf stat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.11.Using perf stat with timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.12.Using perf stat with per thread switch . . . . . . . . . . . . . . . . . . . . . . . 100

4.13.Top command in Linux shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.14.Using top to monitor threads . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.15.Using ps in Linux shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.16.Using pgrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

143



Listings

4.17.Created Bash script to dynamically profile applications (AppMonitor.sh) . . . 102

4.18.Function to obtain process ID from Python environment . . . . . . . . . . . . 102

4.19.Killing processes from Linux shell . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.20.Kernel virtual filesystem /proc information retrieval examples [93] . . . . . . 103

4.21.Using psutil to get CPU frequencies . . . . . . . . . . . . . . . . . . . . . . . 104

4.22.Using perf sched record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.23.Using perf sched script to get full dump of scheduling in Linux . . . . . . . . . 104

4.24.Perf sched script command output [91] . . . . . . . . . . . . . . . . . . . . 105

4.25.Perf sched map command output [91] . . . . . . . . . . . . . . . . . . . . . . 105

4.26.Obtaining CPU mapping view using perf . . . . . . . . . . . . . . . . . . . . . 105

4.27.Recording a system trace using trace-cmd . . . . . . . . . . . . . . . . . . . . 106

4.28.Conversion to Common Trace Format . . . . . . . . . . . . . . . . . . . . . . 107

4.29.Script to generate traces automatically . . . . . . . . . . . . . . . . . . . . . . 109

4.30.Using taskset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.31.CorePlacer.sh script to pin a process to a core using its name . . . . . . . . . 111

4.32.File format that contains overall process pinning information . . . . . . . . . . 111

4.33.Reading coredef_list.a4p and pinning tasks with Python . . . . . . . . . . 112

4.34.Changing CPU governer from Linux shell . . . . . . . . . . . . . . . . . . . . 114

144



A. Bibliography

[1] NASA. What is NASA Doing with Big Data Today. https://open.nasa.gov/blog/

what-is-nasa-doing-with-big-data-today/, accessed 08/2017.

[2] The Eclipse Foundation. APP4MC. https://projects.eclipse.org/proposals/

app4mc, accessed 06/2017.

[3] Robert Höttger, Lukas Krawczyk, and Burkhard Igel. Model-Based Automotive Parti-

tioning and Mapping for Embedded Multicore Systems. In International Conference

on Parallel, Distributed Systems and Software Engineering, volume 2 of ICPDSSE’15,

pages 2643–2649. World Academy of Science, Engineering and Technology, 2015.

[4] Robert Bosch GmbH. AMALTHEA4public. http://www.amalthea-project.org/, ac-

cessed 06/2017.

[5] XMOS Ltd. xCORE-200 eXplorerKIT. https://www.xmos.com/support/boards?

product=18230, accessed 06/2017.

[6] Raspberry Pi Foundation. Raspberry Pi 3 Model B. https://www.raspberrypi.org/

products/raspberry-pi-3-model-b/, accessed 06/2017.

[7] Robert Höttger, Mustafa Özcelikörs, Philipp Heisig, Lukas Krawczyk, Carsten Wolff,

and Burkhard Igel. Constrained Mixed-Critical Parallelization for Distributed Hetero-

geneous Systems. In The 9th IEEE International Conference on Intelligent Data Ac-

quisition and Advanced Computing Systems, Technology and Applications, 2017.

[8] Google Inc. Google Summer of Code 2017 Projects. https://summerofcode.

withgoogle.com/projects/#5257433030066176, accessed 08/2017.

[9] Thomas Rauber and Gudula Rünger. Parallel Programming. Springer-Verlag Berlin

Heidelberg, 2013.

[10] Miro Samek. Embedded Real-Time Systems vs General-Purpose Com-

puters. http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/

articles/CUJ/2003/0302/cuj0302samek/cuj0302samek_s1.htm, accessed 09/2017.

145

https://open.nasa.gov/blog/what-is-nasa-doing-with-big-data-today/
https://open.nasa.gov/blog/what-is-nasa-doing-with-big-data-today/
https://projects.eclipse.org/proposals/app4mc
https://projects.eclipse.org/proposals/app4mc
http://www.amalthea-project.org/
https://www.xmos.com/support/boards?product=18230
https://www.xmos.com/support/boards?product=18230
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://summerofcode.withgoogle.com/projects/#5257433030066176
https://summerofcode.withgoogle.com/projects/#5257433030066176
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/CUJ/2003/0302/cuj0302samek/cuj0302samek_s1.htm
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/CUJ/2003/0302/cuj0302samek/cuj0302samek_s1.htm


A. Bibliography

[11] Dr. Wen-Chi Hou. Interconnection Networks. http://www2.cs.siu.edu/~cs401/

Textbook/ch5.pdf, accessed 08/2017.

[12] CS-550: Distributed Shared Memory [SiS ’94]. Distributed Resource Management:

Distributed Shared Memory.

[13] Lukas Krawczyk, Robert Hoettger, and Uwe Lauschner. Introduction in DPS Architec-

ture, Distributed and Parallel Systems Lecture Notes, ESM DPS WS 2015/2016.

[14] Jernej Barbic. Multi-core architectures. 2006.

[15] Gliwa GmbH embedded systems. Timing Poster. https://www.gliwa.com/

downloads/Timing%20Poster.pdf, accessed 07/2017.

[16] expresslogic. What Is an RTOS and Why Use One? http://rtos.com/PDFs/What_

Is_An_RTOS_and_Why_Use_One_Embedded.com_.pdf, accessed 08/2017.

[17] ARM Ltd. CMSIS-RTOS Documentation. http://www.keil.com/pack/doc/CMSIS/

RTOS/html/index.html, accessed 09/2017.

[18] Python Software Foundation. threading - Higher-level threading interface. https:

//docs.python.org/2/library/threading.html, accessed 08/2017.

[19] Stack Exchange Inc. What makes a kernel/OS real-time? https://stackoverflow.

com/questions/22241264/what-makes-a-kernel-os-real-time?rq=1, accessed

08/2017.

[20] SCALE 13X Steve Doran. How to Perform Real-Time Processing on the Rasp-

berry Pi. https://www.socallinuxexpo.org/sites/default/files/presentations/

Steven_Doran_SCALE_13x.pdf, accessed 08/2017.

[21] Robert Warschofsky. AUTOSAR Software Architecture. https://hpi.de/fileadmin/

user_upload/fachgebiete/giese/Ausarbeitungen_AUTOSAR0809/\Software_

Architecture_Warschofsky.pdf, accessed 06/2017.

[22] The Eclipse Foundation. Application Platform Project for MultiCore (APP4MC). https:

//www.eclipse.org/app4mc/, accessed 06/2017.

[23] Eclipse APP4MC. APP4MC 0.8.0 Documentation. https://www.eclipse.org/

app4mc/help/app4mc-0.8.0/index.html, accessed 08/2017.

[24] The Eclipse Foundation. Eclipse Public License - v 1.0. https://www.eclipse.org/

legal/epl-v10.html, accessed 06/2017.

[25] Robin J. Wilson. Introduction to Graph Theory: Fourth Edition. Prentice Hall, 1996.

146

http://www2.cs.siu.edu/~cs401/Textbook/ch5.pdf
http://www2.cs.siu.edu/~cs401/Textbook/ch5.pdf
https://www.gliwa.com/downloads/Timing%20Poster.pdf
https://www.gliwa.com/downloads/Timing%20Poster.pdf
http://rtos.com/PDFs/What_Is_An_RTOS_and_Why_Use_One_Embedded.com_.pdf
http://rtos.com/PDFs/What_Is_An_RTOS_and_Why_Use_One_Embedded.com_.pdf
http://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html
http://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html
https://docs.python.org/2/library/threading.html
https://docs.python.org/2/library/threading.html
https://stackoverflow.com/questions/22241264/what-makes-a-kernel-os-real-time?rq=1
https://stackoverflow.com/questions/22241264/what-makes-a-kernel-os-real-time?rq=1
https://www.socallinuxexpo.org/sites/default/files/presentations/Steven_Doran_SCALE_13x.pdf
https://www.socallinuxexpo.org/sites/default/files/presentations/Steven_Doran_SCALE_13x.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/giese/Ausarbeitungen_AUTOSAR0809/\Software_Architecture_Warschofsky.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/giese/Ausarbeitungen_AUTOSAR0809/\Software_Architecture_Warschofsky.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/giese/Ausarbeitungen_AUTOSAR0809/\Software_Architecture_Warschofsky.pdf
https://www.eclipse.org/app4mc/
https://www.eclipse.org/app4mc/
https://www.eclipse.org/app4mc/help/app4mc-0.8.0/index.html
https://www.eclipse.org/app4mc/help/app4mc-0.8.0/index.html
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html


A. Bibliography

[26] C. Wolff, L. Krawczyk, R. Höttger, C. Brink, U. Lauschner, D. Fruhner, E. Kamsties, and

B. Igel. AMALTHEA - Tailoring tools to projects in automotive software development. In

2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications (IDAACS), volume 2, pages 515–

520, Sept 2015.

[27] Robert Höttger, Lukas Krawczyk, and Burkhard Igel. Model-Based Automotive Parti-

tioning and Mapping for Embedded Multicore Systems. International Journal of Com-

puter, Electrical, Automation, Control and Information Engineering, 9(1):268 – 274,

2015.

[28] A. Sailer, S. Schmidhuber, M. Hempe, M. Deubzer, and J. Mottok. Distributed Multi-

Core Development in the Automotive Domain - A Practical Comparison of ASAM MDX

vs. AUTOSAR vs. AMALTHEA. In ARCS 2016; 29th International Conference on

Architecture of Computing Systems, pages 1–8, April 2016.

[29] Devika K and Syama R. An Overview of AUTOSAR Multicore Operating System Im-

plementation. In International Journal of Innovative Research in Science, Engineering,

and Technology Vol. 2, Issue 7, July 2013.

[30] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion. Multi-source and multicore auto-

motive ECUs - OS protection mechanisms and scheduling. In 2010 IEEE International

Symposium on Industrial Electronics, pages 3734–3741, July 2010.

[31] M. Alfranseder, M. Deubzer, B. Justus, J. Mottok, and C. Siemers. An efficient spin-

lock based multi-core resource sharing protocol. In 2014 IEEE 33rd International

Performance Computing and Communications Conference (IPCCC), pages 1–7, Dec

2014.

[32] F. W. Yu, B. H. Zeng, Y. H. Huang, H. I. Wu, C. R. Lee, and R. S. Tsay. A Critical-

Section-Level timing synchronization approach for deterministic multi-core instruction-

set simulations. In 2013 Design, Automation Test in Europe Conference Exhibition

(DATE), pages 643–648, March 2013.

[33] Y. Lu, T. Nolte, I. Bate, J. Kraft, and C. Norström. Assessment of trace-differences

in timing analysis for Complex Real-Time Embedded Systems. In 2011 6th IEEE

International Symposium on Industrial and Embedded Systems, pages 284–293, June

2011.

[34] S. Nilakantan, K. Sangaiah, A. More, G. Salvadory, B. Taskin, and M. Hemp-

stead. Synchrotrace: synchronization-aware architecture-agnostic traces for light-

weight multicore simulation. In 2015 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pages 278–287, March 2015.

147



A. Bibliography

[35] David Wentzlaff, Patrick Griffin, and Henry Hoffmann et al. On-chip Interconnection

Architecture of the Tile Processor. pages 15–31. IEEE Computer Society, 2017.

[36] XMOS Ltd. xCORE Architecture Flyer. http://www.xmos.com/download/private/

xCORE-Architecture-Flyer%281.1%29.pdf, accessed 06/2017.

[37] XMOS Ltd. XE216-512-TQ128-Datasheet. http://www.xmos.com/download/

private/XE216-512-TQ128-Datasheet%281.12%29.pdf, accessed 06/2017.

[38] Leonard Kleinrock. Analysis of A time-shared processor. Naval Research Logistics

Quarterly, 11(1):59–73, 1964.

[39] Carl Hamacher. Computer Organization (5th Edition). McGraw Hill Higher Education,

2001.

[40] XMOS Ltd. XMOS Programming Guide. https://www.xmos.com/download/private/

XMOS-Programming-Guide-(documentation)(E).pdf, accessed 06/2017.

[41] Raspberry Pi Foundation. Raspbian. https://www.raspberrypi.org/downloads/

raspbian/, accessed 06/2017.

[42] Ubuntu MATE Team. Ubuntu MATE for the Raspberry Pi 2 and Raspberry Pi 3. https:

//ubuntu-mate.org/raspberry-pi/, accessed 06/2017.

[43] kernel.org. CFS Scheduler. https://www.kernel.org/doc/Documentation/

scheduler/sched-design-CFS.txt, accessed 08/2017.

[44] Wolfgang Mauerer. Professional Linux Kernel Architecture. Wiley Publishing, Inc.,

2008.

[45] Brian Ward. How Linux Works. No Starch Press, 2014.

[46] SparkFun. Pulse Width Modulation. https://learn.sparkfun.com/tutorials/

pulse-width-modulation, accessed 06/2017.

[47] Rudra Pratap Suman. UART. http://students.iitk.ac.in/eclub/assets/

lectures/summer12/uart.pdf, accessed 06/2017.

[48] SparkFun. I2C. https://learn.sparkfun.com/tutorials/i2c/all.pdf, accessed

06/2017.

[49] TechTarget. Ethernet. http://searchnetworking.techtarget.com/definition/

Ethernet, accessed 06/2017.

[50] Nortel Networks. Unit 4 : Introduction to TCP/IP. http://k-12.pisd.edu/currinst/

network/if4_1st.pdf, accessed 06/2017.

148

http://www.xmos.com/download/private/xCORE-Architecture-Flyer%281.1%29.pdf
http://www.xmos.com/download/private/xCORE-Architecture-Flyer%281.1%29.pdf
http://www.xmos.com/download/private/XE216-512-TQ128-Datasheet%281.12%29.pdf
http://www.xmos.com/download/private/XE216-512-TQ128-Datasheet%281.12%29.pdf
https://www.xmos.com/download/private/XMOS-Programming-Guide-(documentation)(E).pdf
https://www.xmos.com/download/private/XMOS-Programming-Guide-(documentation)(E).pdf
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://ubuntu-mate.org/raspberry-pi/
https://ubuntu-mate.org/raspberry-pi/
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
http://students.iitk.ac.in/eclub/assets/lectures/summer12/uart.pdf
http://students.iitk.ac.in/eclub/assets/lectures/summer12/uart.pdf
https://learn.sparkfun.com/tutorials/i2c/all.pdf
http://searchnetworking.techtarget.com/definition/Ethernet
http://searchnetworking.techtarget.com/definition/Ethernet
http://k-12.pisd.edu/currinst/network/if4_1st.pdf
http://k-12.pisd.edu/currinst/network/if4_1st.pdf


A. Bibliography

[51] SparkFun. Serial Peripheral Interface. https://learn.sparkfun.com/tutorials/

serial-peripheral-interface-spi/all.pdf, accessed 06/2017.

[52] PishRobot. SRF02 Ultrasonic range finder Technical Specification. http://www.

pishrobot.com/files/products/datasheets/srf02.pdf, accessed 06/2017.

[53] Adafruit. 4-channel I2C-safe Bi-directional Logic Level Converter. https://www.

adafruit.com/product/757, accessed 06/2017.

[54] XP Power. JCA Series. http://www.xppower.com/pdfs/SF_JCA04-06.pdf, accessed

06/2017.

[55] Tamiya. TT-01 TYPE-E Chassis. http://www.tamiya.com/english/rc/rcmanual/

tt01_type_e.pdf, accessed 06/2017.

[56] Sanford Friedenthal, Alan Moore, and Rick Steiner. OMG Systems Modeling Lan-

guage Tutorial. 2006-2009.

[57] Roving Networks. RN-41-EK RN-42-EK Evaluation Kit User’s Guide. http://

ww1.microchip.com/downloads/en/DeviceDoc/rn-4142-ek-ug-1.0.pdf, accessed

07/2017.

[58] Indiana University Knowledge Base. What is telnet? https://kb.iu.edu/d/aayd,

accessed 07/2017.

[59] Python Software Foundation. Python 2.7.14rc1 Documentation. https://docs.

python.org/2/, accessed 07/2017.

[60] Free Software Foundation Inc. GNU C Compiler. https://gcc.gnu.org/onlinedocs/

gcc-6.3.0/gcc/, accessed 07/2017.

[61] Mikhail Kupchik. Raspberry Pi Eclipse Tutorial. http://www.gurucoding.com/en/

raspberry_pi_eclipse/index.php, accessed 07/2017.

[62] The Linux Documentation Project. Advanced Bash-Scripting Guide. http://tldp.

org/LDP/abs/html/, accessed 07/2017.

[63] Refsnes Data W3Schools. AJAX Introduction. https://www.w3schools.com/xml/

ajax_intro.asp, accessed 07/2017.

[64] The jQuery Foundation. jQuery. https://jquery.com/, accessed 07/2017.

[65] University of Maryland Computer Science Dept. Computer Performance.

https://cs.umd.edu/class/spring2015/cmsc411-0201/lectures/lecture04_

performance_reliability.pdf, accessed 07/2017.

149

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all.pdf
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all.pdf
http://www.pishrobot.com/files/products/datasheets/srf02.pdf
http://www.pishrobot.com/files/products/datasheets/srf02.pdf
https://www.adafruit.com/product/757
https://www.adafruit.com/product/757
http://www.xppower.com/pdfs/SF_JCA04-06.pdf
http://www.tamiya.com/english/rc/rcmanual/tt01_type_e.pdf
http://www.tamiya.com/english/rc/rcmanual/tt01_type_e.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/rn-4142-ek-ug-1.0.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/rn-4142-ek-ug-1.0.pdf
https://kb.iu.edu/d/aayd
https://docs.python.org/2/
https://docs.python.org/2/
https://gcc.gnu.org/onlinedocs/gcc-6.3.0/gcc/
https://gcc.gnu.org/onlinedocs/gcc-6.3.0/gcc/
http://www.gurucoding.com/en/raspberry_pi_eclipse/index.php
http://www.gurucoding.com/en/raspberry_pi_eclipse/index.php
http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/abs/html/
https://www.w3schools.com/xml/ajax_intro.asp
https://www.w3schools.com/xml/ajax_intro.asp
https://jquery.com/
https://cs.umd.edu/class/spring2015/cmsc411-0201/lectures/lecture04_performance_reliability.pdf
https://cs.umd.edu/class/spring2015/cmsc411-0201/lectures/lecture04_performance_reliability.pdf


A. Bibliography

[66] Stack Exchange Inc. User CPU time vs System CPU time. http://stackoverflow.

com/questions/4310039/user-cpu-time-vs-system-cpu-time, accessed 07/2017.

[67] Python Software Foundation. psutil. https://pypi.python.org/pypi/psutil, ac-

cessed 07/2017.

[68] Python Software Foundation. socket - Low-level networking interface. https://docs.

python.org/2/library/socket.html, accessed 07/2017.

[69] Igor Ljubuncic. Apache Web Server Complete Guide. 2011.

[70] Bhupendra Ratha. Web Server. http://www.clib.dauniv.ac.in/E-Lecture/Web%

20Server.pdf, accessed 07/2017.

[71] jacksonliam. mjpg_streamer. https://github.com/jacksonliam/mjpg-streamer,

accessed 07/2017.

[72] jqPlot. jqPlot: pure javascript plotting. http://www.jqplot.com/, accessed 07/2017.

[73] OpenCV team. Open Source Computer Vision Library. http://opencv.org/, ac-

cessed 08/2017.

[74] Pygame. Pygame. https://www.pygame.org/, accessed 07/2017.

[75] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper.

Virtual Network Computing. IEEE Internet Computing, 2(1), January/February 1998.

[76] Google Inc. Android. https://www.android.com/, accessed 07/2017.

[77] Google Inc. Android Studio. https://developer.android.com/studio/index.html,

accessed 07/2017.

[78] controlwear. Virtual Joystick Android. https://github.com/controlwear/

virtual-joystick-android, accessed 07/2017.

[79] Digital Security group Erik Poll. Static Analysis aka Source code analysis. https:

//www.cs.ru.nl/E.Poll/ufrj/5_StaticAnalysisPREfast.pdf, accessed 07/2017.

[80] Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation. 2004.

[81] testingexcellence.com. Static Analysis vs Dynamic Analy-

sis in Software Testing. http://www.testingexcellence.com/

static-analysis-vs-dynamic-analysis-software-testing/, accessed 07/2017.

[82] The IPM developers. Profiling vs Tracing. http://ipm-hpc.sourceforge.net/

profilingvstracing.html, accessed 07/2017.

150

http://stackoverflow.com/questions/4310039/user-cpu-time-vs-system-cpu-time
http://stackoverflow.com/questions/4310039/user-cpu-time-vs-system-cpu-time
https://pypi.python.org/pypi/psutil
https://docs.python.org/2/library/socket.html
https://docs.python.org/2/library/socket.html
http://www.clib.dauniv.ac.in/E-Lecture/Web%20Server.pdf
http://www.clib.dauniv.ac.in/E-Lecture/Web%20Server.pdf
https://github.com/jacksonliam/mjpg-streamer
http://www.jqplot.com/
http://opencv.org/
https://www.pygame.org/
https://www.android.com/
https://developer.android.com/studio/index.html
https://github.com/controlwear/virtual-joystick-android
https://github.com/controlwear/virtual-joystick-android
https://www.cs.ru.nl/E.Poll/ufrj/5_StaticAnalysisPREfast.pdf
https://www.cs.ru.nl/E.Poll/ufrj/5_StaticAnalysisPREfast.pdf
http://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing/
http://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing/
http://ipm-hpc.sourceforge.net/profilingvstracing.html
http://ipm-hpc.sourceforge.net/profilingvstracing.html


A. Bibliography

[83] The Linux Documentation Project. Chapter 7: System Monitoring. http://ipm-hpc.

sourceforge.net/profilingvstracing.html, accessed 07/2017.

[84] XMOS Ltd. XMOS Timing Analyzer Manual. https://www.xmos.com/download/

private/XMOS-Timing-Analyzer-Manual%281.2%29.pdf, accessed 07/2017.

[85] XMOS Ltd. Estimating Power Consumption For XS1-L De-

vices. https://www.xmos.com/download/private/AN01005%

3A-Estimating-Power-Consumption-For-XS1-L-Devices%281.0.2rc1%29.pdf,

accessed 07/2017.

[86] Diary R. Suleiman, Muhammad A. Ibrahim, and Ibrahim I. Hamarash. Dynamic Volt-

age Frequency Scaling (DVFS) for Microprocessors Power and Energy Reduction.

2005.

[87] Shi-Hao Chen and Jiing-Yuan Lin. Implementation and verification practices of DVFS

and power gating. In 2009 International Symposium on VLSI Design, Automation and

Test, pages 19–22, April 2009.

[88] sourceware.org. objdump. https://sourceware.org/binutils/docs/binutils/

objdump.html, accessed 07/2017.

[89] Python Software Foundation. dis - Disassembler for Python bytecode. https://docs.

python.org/2/library/dis.html, accessed 07/2017.

[90] Kernel.org. perf: Linux profiling with performance counters. https://perf.wiki.

kernel.org/index.php/Main_Page, accessed 07/2017.

[91] Brendan Gregg. perf Examples. http://www.brendangregg.com/perf.html, ac-

cessed 07/2017.

[92] Tecmint. 12 TOP Command Examples in Linux. https://www.tecmint.com/

12-top-command-examples-in-linux/, accessed 07/2017.

[93] The Linux Documentation Project. Linux Filesystem Hierarchy: /proc. http://www.

tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html, accessed 07/2017.

[94] LWN.net. trace-cmd: A front-end for Ftrace. https://lwn.net/Articles/410200/,

accessed 07/2017.

[95] TraceCompass. TraceCompass. http://tracecompass.org, accessed 07/2017.

[96] The LTTng Project. LTTng. http://lttng.org/, accessed 07/2017.

[97] Kernel.org. Linux kernel sources.

151

http://ipm-hpc.sourceforge.net/profilingvstracing.html
http://ipm-hpc.sourceforge.net/profilingvstracing.html
https://www.xmos.com/download/private/XMOS-Timing-Analyzer-Manual%281.2%29.pdf
https://www.xmos.com/download/private/XMOS-Timing-Analyzer-Manual%281.2%29.pdf
https://www.xmos.com/download/private/AN01005%3A-Estimating-Power-Consumption-For-XS1-L-Devices%281.0.2rc1%29.pdf
https://www.xmos.com/download/private/AN01005%3A-Estimating-Power-Consumption-For-XS1-L-Devices%281.0.2rc1%29.pdf
https://sourceware.org/binutils/docs/binutils/objdump.html
https://sourceware.org/binutils/docs/binutils/objdump.html
https://docs.python.org/2/library/dis.html
https://docs.python.org/2/library/dis.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.brendangregg.com/perf.html
https://www.tecmint.com/12-top-command-examples-in-linux/
https://www.tecmint.com/12-top-command-examples-in-linux/
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
https://lwn.net/Articles/410200/
http://tracecompass.org
http://lttng.org/


A. Bibliography

[98] Stack Exchange Inc. Building Perf with Babeltrace (for Perf to

CTF Conversion). http://stackoverflow.com/questions/43576997/

building-perf-with-babeltrace-for-perf-to-ctf-conversion, accessed

07/2017.

[99] Die.Net. taskset(1) - Linux man page. https://linux.die.net/man/1/taskset, ac-

cessed 07/2017.

[100] Etienne Le Sueur and Gernot Heiser. Dynamic Voltage and Frequency Scaling: The

Laws of Diminishing Returns. In Proceedings of the 2010 International Conference on

Power Aware Computing and Systems, HotPower’10, pages 1–8, Berkeley, CA, USA,

2010. USENIX Association.

[101] Debian Wiki. CPU Frequency Scaling. https://wiki.debian.org/HowTo/

CpuFrequencyScaling, accessed 08/2017.

[102] Gateworks. Dynamic Voltage and Frequency Scaling (DVFS). http://trac.

gateworks.com/wiki/DVFS, accessed 08/2017.

[103] Lukas Krawczyk, Carsten Wolff, and Daniel Fruhner. Automated Distribution of Soft-

ware to Multi-core Hardware in Model Based Embedded Systems Development,

pages 320–329. Springer International Publishing, Cham, 2015.

[104] Operations Research Group Bologna. Bin-packing problem. http://www.or.deis.

unibo.it/kp/Chapter8.pdf, accessed 08/2017.

[105] Linux Foundation. Real-time Linux Wiki. https://rt.wiki.kernel.org/index.php/

Main_Page, accessed 09/2017.

[106] Microchip. Ethernet Theory of Operation. http://http://ww1.microchip.com/

downloads/en/AppNotes/01120a.pdf, accessed 10/2017.

[107] The Eclipse Foundation. PolarSys. https://www.polarsys.org/, accessed 10/2017.

152

http://stackoverflow.com/questions/43576997/building-perf-with-babeltrace-for-perf-to-ctf-conversion
http://stackoverflow.com/questions/43576997/building-perf-with-babeltrace-for-perf-to-ctf-conversion
https://linux.die.net/man/1/taskset
https://wiki.debian.org/HowTo/CpuFrequencyScaling
https://wiki.debian.org/HowTo/CpuFrequencyScaling
http://trac.gateworks.com/wiki/DVFS
http://trac.gateworks.com/wiki/DVFS
http://www.or.deis.unibo.it/kp/Chapter8.pdf
http://www.or.deis.unibo.it/kp/Chapter8.pdf
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
http://http://ww1.microchip.com/downloads/en/AppNotes/01120a.pdf
http://http://ww1.microchip.com/downloads/en/AppNotes/01120a.pdf
https://www.polarsys.org/


B. Eidesstattliche Erklärung

Gemäß § 17,(5) der BPO erkläre ich an Eides statt, dass ich die vorliegende Arbeit selb-

ständig angefertigt habe. Ich habe mich keiner fremden Hilfe bedient und keine anderen, als

die angegebenen Quellen und Hilfsmittel benutzt. Alle Stellen, die wörtlich oder sinngemäß

veröffentlichten oder nicht veröffentlichten Schriften und anderen Quellen entnommen sind,

habe ich als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form

noch keiner Prüfungsbehörde vorgelegen.

Dortmund, October 9, 2017 Mustafa Özçelikörs

Erklärung

Mir ist bekannt, dass nach § 156 StGB bzw. § 163 StGB eine falsche Versicherung an Eides

Statt bzw. eine fahrlässige falsche Versicherung an Eides Statt mit Freiheitsstrafe bis zu drei

Jahren bzw. bis zu einem Jahr oder mit Geldstrafe bestraft werden kann.

Dortmund, October 9, 2017 Mustafa Özçelikörs

153



C. About Rover Project

The A4MCAR is not the only demonstrator for APP4MC. In the Rover project, investigation

of APP4MC’s effectiveness is done by using a more stable POSIX thread-based platform

using only C++ language. The developments for the Rover have lots of synergies with

Eclipse’s PolarSys project [107]. APP4MC Rover also requires a lot of effort towards Cloud

& IoT based developments such as implementing a bidirectional data communication with

an Eclipse Hono cloud instance.

The author of this thesis is also engaged with tackling tasks in the Rover project. Ensur-

ing schedulable and traceable thread-based software architecture is one of the most crucial

challenges in the Rover project. The Rover is developed with a much more advanced web

interface that can display sensor information, utilization information, control the Rover, and

switch between driving modes such as manual driving, Adaptive Cruise Control, and Park-

ing. Furthermore, connectivity display on OLED, bluetooth-based driving using RFCOMM

sockets, and many more features will be developed. Some figures are given with the Figure

C.1 that depicts the progress in the Rover project. The Rover project is developed at IDiAL

Institute of University of Applied Sciences and Arts Dortmund and it is accessible from the

following link:

http : //git.eclipse.org/c/app4mc/org.eclipse.app4mc.examples.git/tree/
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C. About Rover Project

Figure C.1.: Rover project and its web interface
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